These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 29774597)

  • 1. Assessment of the generalization of learned image reconstruction and the potential for transfer learning.
    Knoll F; Hammernik K; Kobler E; Pock T; Recht MP; Sodickson DK
    Magn Reson Med; 2019 Jan; 81(1):116-128. PubMed ID: 29774597
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evaluation on the generalization of a learned convolutional neural network for MRI reconstruction.
    Huang J; Wang S; Zhou G; Hu W; Yu G
    Magn Reson Imaging; 2022 Apr; 87():38-46. PubMed ID: 34968699
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Learning a variational network for reconstruction of accelerated MRI data.
    Hammernik K; Klatzer T; Kobler E; Recht MP; Sodickson DK; Pock T; Knoll F
    Magn Reson Med; 2018 Jun; 79(6):3055-3071. PubMed ID: 29115689
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transfer learning in deep neural network based under-sampled MR image reconstruction.
    Arshad M; Qureshi M; Inam O; Omer H
    Magn Reson Imaging; 2021 Feb; 76():96-107. PubMed ID: 32980504
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Performance of a deep learning-based CT image denoising method: Generalizability over dose, reconstruction kernel, and slice thickness.
    Zeng R; Lin CY; Li Q; Jiang L; Skopec M; Fessler JA; Myers KJ
    Med Phys; 2022 Feb; 49(2):836-853. PubMed ID: 34954845
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reconstruction of Compressed-sensing MR Imaging Using Deep Residual Learning in the Image Domain.
    Ouchi S; Ito S
    Magn Reson Med Sci; 2021 Jun; 20(2):190-203. PubMed ID: 32611937
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Using Deep Learning to Accelerate Knee MRI at 3 T: Results of an Interchangeability Study.
    Recht MP; Zbontar J; Sodickson DK; Knoll F; Yakubova N; Sriram A; Murrell T; Defazio A; Rabbat M; Rybak L; Kline M; Ciavarra G; Alaia EF; Samim M; Walter WR; Lin DJ; Lui YW; Muckley M; Huang Z; Johnson P; Stern R; Zitnick CL
    AJR Am J Roentgenol; 2020 Dec; 215(6):1421-1429. PubMed ID: 32755163
    [No Abstract]   [Full Text] [Related]  

  • 8. Noise2Recon: Enabling SNR-robust MRI reconstruction with semi-supervised and self-supervised learning.
    Desai AD; Ozturkler BM; Sandino CM; Boutin R; Willis M; Vasanawala S; Hargreaves BA; Ré C; Pauly JM; Chaudhari AS
    Magn Reson Med; 2023 Nov; 90(5):2052-2070. PubMed ID: 37427449
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Deep Residual Learning for Accelerated MRI Using Magnitude and Phase Networks.
    Lee D; Yoo J; Tak S; Ye JC
    IEEE Trans Biomed Eng; 2018 Sep; 65(9):1985-1995. PubMed ID: 29993390
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evaluation of a deep learning-based reconstruction method for denoising and image enhancement of shoulder MRI in patients with shoulder pain.
    Feuerriegel GC; Weiss K; Kronthaler S; Leonhardt Y; Neumann J; Wurm M; Lenhart NS; Makowski MR; Schwaiger BJ; Woertler K; Karampinos DC; Gersing AS
    Eur Radiol; 2023 Jul; 33(7):4875-4884. PubMed ID: 36806569
    [TBL] [Abstract][Full Text] [Related]  

  • 11. MRI super-resolution reconstruction for MRI-guided adaptive radiotherapy using cascaded deep learning: In the presence of limited training data and unknown translation model.
    Chun J; Zhang H; Gach HM; Olberg S; Mazur T; Green O; Kim T; Kim H; Kim JS; Mutic S; Park JC
    Med Phys; 2019 Sep; 46(9):4148-4164. PubMed ID: 31309585
    [TBL] [Abstract][Full Text] [Related]  

  • 12. SANTIS: Sampling-Augmented Neural neTwork with Incoherent Structure for MR image reconstruction.
    Liu F; Samsonov A; Chen L; Kijowski R; Feng L
    Magn Reson Med; 2019 Nov; 82(5):1890-1904. PubMed ID: 31166049
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Scan-specific robust artificial-neural-networks for k-space interpolation (RAKI) reconstruction: Database-free deep learning for fast imaging.
    Akçakaya M; Moeller S; Weingärtner S; Uğurbil K
    Magn Reson Med; 2019 Jan; 81(1):439-453. PubMed ID: 30277269
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Domain-adaptive denoising network for low-dose CT via noise estimation and transfer learning.
    Wang J; Tang Y; Wu Z; Tsui BMW; Chen W; Yang X; Zheng J; Li M
    Med Phys; 2023 Jan; 50(1):74-88. PubMed ID: 36018732
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Automatic MR image quality evaluation using a Deep CNN: A reference-free method to rate motion artifacts in neuroimaging.
    Fantini I; Yasuda C; Bento M; Rittner L; Cendes F; Lotufo R
    Comput Med Imaging Graph; 2021 Jun; 90():101897. PubMed ID: 33770561
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fast and accurate reconstruction of human lung gas MRI with deep learning.
    Duan C; Deng H; Xiao S; Xie J; Li H; Sun X; Ma L; Lou X; Ye C; Zhou X
    Magn Reson Med; 2019 Dec; 82(6):2273-2285. PubMed ID: 31322298
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Application of deep learning-based image reconstruction in MR imaging of the shoulder joint to improve image quality and reduce scan time.
    Kaniewska M; Deininger-Czermak E; Getzmann JM; Wang X; Lohezic M; Guggenberger R
    Eur Radiol; 2023 Mar; 33(3):1513-1525. PubMed ID: 36166084
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Deep learning image reconstruction for improvement of image quality of abdominal computed tomography: comparison with hybrid iterative reconstruction.
    Ichikawa Y; Kanii Y; Yamazaki A; Nagasawa N; Nagata M; Ishida M; Kitagawa K; Sakuma H
    Jpn J Radiol; 2021 Jun; 39(6):598-604. PubMed ID: 33449305
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A multi-scale residual network for accelerated radial MR parameter mapping.
    Fu Z; Mandava S; Keerthivasan MB; Li Z; Johnson K; Martin DR; Altbach MI; Bilgin A
    Magn Reson Imaging; 2020 Nov; 73():152-162. PubMed ID: 32882339
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Unsupervised learning of a deep neural network for metal artifact correction using dual-polarity readout gradients.
    Kwon K; Kim D; Kim B; Park H
    Magn Reson Med; 2020 Jan; 83(1):124-138. PubMed ID: 31403219
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.