These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
178 related articles for article (PubMed ID: 29774907)
1. Plasmon response evaluation based on image-derived arbitrary nanostructures. Trautmann S; Richard-Lacroix M; Dathe A; Schneidewind H; Dellith J; Fritzsche W; Deckert V Nanoscale; 2018 May; 10(21):9830-9839. PubMed ID: 29774907 [TBL] [Abstract][Full Text] [Related]
2. Near field plasmonic gradient effects on high vacuum tip-enhanced Raman spectroscopy. Fang Y; Zhang Z; Chen L; Sun M Phys Chem Chem Phys; 2015 Jan; 17(2):783-94. PubMed ID: 25424492 [TBL] [Abstract][Full Text] [Related]
3. Plasmonic coupling with most of the transition metals: a new family of broad band and near infrared nanoantennas. Manchon D; Lermé J; Zhang T; Mosset A; Jamois C; Bonnet C; Rye JM; Belarouci A; Broyer M; Pellarin M; Cottancin E Nanoscale; 2015 Jan; 7(3):1181-92. PubMed ID: 25488835 [TBL] [Abstract][Full Text] [Related]
4. Quantitative comparison of plasmon resonances and field enhancements of near-field optical antennae using FDTD simulations. Hermann RJ; Gordon MJ Opt Express; 2018 Oct; 26(21):27668-27682. PubMed ID: 30469829 [TBL] [Abstract][Full Text] [Related]
5. Effects of the tip shape on the localized field enhancement and far field radiation pattern of the plasmonic inverted pyramidal nanostructures with the tips for surface-enhanced Raman scattering. Cheng HH; Chen SW; Chang YY; Chu JY; Lin DZ; Chen YP; Li JH Opt Express; 2011 Oct; 19(22):22125-41. PubMed ID: 22109056 [TBL] [Abstract][Full Text] [Related]
6. Quantitative Plasmon Mode and Surface-Enhanced Raman Scattering Analyses of Strongly Coupled Plasmonic Nanotrimers with Diverse Geometries. Lee H; Kim GH; Lee JH; Kim NH; Nam JM; Suh YD Nano Lett; 2015 Jul; 15(7):4628-36. PubMed ID: 26075353 [TBL] [Abstract][Full Text] [Related]
7. Evolution of Plasmonic Metamolecule Modes in the Quantum Tunneling Regime. Scholl JA; Garcia-Etxarri A; Aguirregabiria G; Esteban R; Narayan TC; Koh AL; Aizpurua J; Dionne JA ACS Nano; 2016 Jan; 10(1):1346-54. PubMed ID: 26639023 [TBL] [Abstract][Full Text] [Related]
8. Near-field chemical mapping of gold nanostructures using a functionalized scanning probe. Dab C; Awada C; Merlen A; Ruediger A Phys Chem Chem Phys; 2017 Nov; 19(46):31063-31071. PubMed ID: 29159349 [TBL] [Abstract][Full Text] [Related]
9. Strong plasmon coupling in self-assembled superparamagnetic nanoshell chains. Xiong M; Jin X; Ye J Nanoscale; 2016 Mar; 8(9):4991-9. PubMed ID: 26864389 [TBL] [Abstract][Full Text] [Related]
10. Evaluating the Optical Response of Heavily Decorated Black Silicon Based on a Realistic 3D Modeling Methodology. Li Y; Wang D; Liang Z; Zeng L; Li W; Xie P; Ding Q; Zhang H; Schaaf P; Wang W ACS Appl Mater Interfaces; 2022 Aug; 14(31):36189-36199. PubMed ID: 35767685 [TBL] [Abstract][Full Text] [Related]
11. Detailed correlations between SERS enhancement and plasmon resonances in subwavelength closely spaced Au nanorod arrays. Huang Y; Zhang X; Ringe E; Ma L; Zhai X; Wang L; Zhang Z Nanoscale; 2018 Mar; 10(9):4267-4275. PubMed ID: 29436546 [TBL] [Abstract][Full Text] [Related]
12. Tunable plasmon resonances in a metallic nanotip-film system. Uetsuki K; Verma P; Nordlander P; Kawata S Nanoscale; 2012 Sep; 4(19):5931-5. PubMed ID: 22899297 [TBL] [Abstract][Full Text] [Related]
13. [Optical Properties of Ag-Al Nanosphere Heterodimer]. Cheng L; Jiang YG; Huang LQ; Zhang Y; Wu J; Sun H; Liu Q; Wang J Guang Pu Xue Yu Guang Pu Fen Xi; 2016 Nov; 36(11):3470-5. PubMed ID: 30198246 [TBL] [Abstract][Full Text] [Related]
14. Relation between near-field and far-field properties of plasmonic Fano resonances. Gallinet B; Martin OJ Opt Express; 2011 Oct; 19(22):22167-75. PubMed ID: 22109059 [TBL] [Abstract][Full Text] [Related]
16. Tip-Enhanced Raman Excitation Spectroscopy (TERES): Direct Spectral Characterization of the Gap-Mode Plasmon. Yang M; Mattei MS; Cherqui CR; Chen X; Van Duyne RP; Schatz GC Nano Lett; 2019 Oct; 19(10):7309-7316. PubMed ID: 31518135 [TBL] [Abstract][Full Text] [Related]
17. The role of a plasmonic substrate on the enhancement and spatial resolution of tip-enhanced Raman scattering. Rahaman M; Milekhin AG; Mukherjee A; Rodyakina EE; Latyshev AV; Dzhagan VM; Zahn DRT Faraday Discuss; 2019 May; 214():309-323. PubMed ID: 30839033 [TBL] [Abstract][Full Text] [Related]
18. Exploring Coupled Plasmonic Nanostructures in the Near Field by Photoemission Electron Microscopy. Yu H; Sun Q; Ueno K; Oshikiri T; Kubo A; Matsuo Y; Misawa H ACS Nano; 2016 Nov; 10(11):10373-10381. PubMed ID: 27775321 [TBL] [Abstract][Full Text] [Related]
19. Understanding the Role of Different Substrate Geometries for Achieving Optimum Tip-Enhanced Raman Scattering Sensitivity. He L; Rahaman M; Madeira TI; Zahn DRT Nanomaterials (Basel); 2021 Feb; 11(2):. PubMed ID: 33540743 [TBL] [Abstract][Full Text] [Related]