These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
202 related articles for article (PubMed ID: 29774952)
21. The pore-rhizosheath shapes maize root architecture by enhancing root distribution in macropores. Liu L; Qin S; Richard Whalley W; Zhou H; Ren T; Gao W Plant Cell Environ; 2024 Aug; 47(8):2911-2922. PubMed ID: 38623641 [TBL] [Abstract][Full Text] [Related]
22. The effect of root hairs on root water uptake is determined by root-soil contact and root hair shrinkage. Duddek P; Ahmed MA; Javaux M; Vanderborght J; Lovric G; King A; Carminati A New Phytol; 2023 Dec; 240(6):2484-2497. PubMed ID: 37525254 [TBL] [Abstract][Full Text] [Related]
23. An extended root phenotype: the rhizosphere, its formation and impacts on plant fitness. de la Fuente Cantó C; Simonin M; King E; Moulin L; Bennett MJ; Castrillo G; Laplaze L Plant J; 2020 Aug; 103(3):951-964. PubMed ID: 32324287 [TBL] [Abstract][Full Text] [Related]
24. Mechanisms of physiological adjustment of N2 fixation in Cicer arietinum L. (chickpea) during early stages of water deficit: single or multi-factor controls. Nasr Esfahani M; Sulieman S; Schulze J; Yamaguchi-Shinozaki K; Shinozaki K; Tran LS Plant J; 2014 Sep; 79(6):964-80. PubMed ID: 24947137 [TBL] [Abstract][Full Text] [Related]
25. Root hair length and rhizosheath mass depend on soil porosity, strength and water content in barley genotypes. Haling RE; Brown LK; Bengough AG; Valentine TA; White PJ; Young IM; George TS Planta; 2014 Mar; 239(3):643-51. PubMed ID: 24318401 [TBL] [Abstract][Full Text] [Related]
26. Root hairs are the most important root trait for rhizosheath formation of barley (Hordeum vulgare), maize (Zea mays) and Lotus japonicus (Gifu). Burak E; Quinton JN; Dodd IC Ann Bot; 2021 Jul; 128(1):45-57. PubMed ID: 33631013 [TBL] [Abstract][Full Text] [Related]
27. Effects of root-induced compaction on rhizosphere hydraulic properties--X-ray microtomography imaging and numerical simulations. Aravena JE; Berli M; Ghezzehei TA; Tyler SW Environ Sci Technol; 2011 Jan; 45(2):425-31. PubMed ID: 21121599 [TBL] [Abstract][Full Text] [Related]
28. Rhizosheaths stimulate short-term root decomposition in a semiarid grassland. Kong D; Wang J; Yang F; Shao P Sci Total Environ; 2018 Nov; 640-641():1297-1301. PubMed ID: 30021296 [TBL] [Abstract][Full Text] [Related]
29. Understanding the genetic control and physiological traits associated with rhizosheath production by barley (Hordeum vulgare). George TS; Brown LK; Ramsay L; White PJ; Newton AC; Bengough AG; Russell J; Thomas WT New Phytol; 2014 Jul; 203(1):195-205. PubMed ID: 24684319 [TBL] [Abstract][Full Text] [Related]
30. Correlations between morpho-anatomical changes and radial hydraulic conductivity in roots of olive trees under water deficit and rewatering. Tataranni G; Santarcangelo M; Sofo A; Xiloyannis C; Tyerman SD; Dichio B Tree Physiol; 2015 Dec; 35(12):1356-65. PubMed ID: 26446266 [TBL] [Abstract][Full Text] [Related]
31. Crop Root Responses to Drought Stress: Molecular Mechanisms, Nutrient Regulations, and Interactions with Microorganisms in the Rhizosphere. Kang J; Peng Y; Xu W Int J Mol Sci; 2022 Aug; 23(16):. PubMed ID: 36012575 [TBL] [Abstract][Full Text] [Related]
32. The emergent rhizosphere: imaging the development of the porous architecture at the root-soil interface. Helliwell JR; Sturrock CJ; Mairhofer S; Craigon J; Ashton RW; Miller AJ; Whalley WR; Mooney SJ Sci Rep; 2017 Nov; 7(1):14875. PubMed ID: 29093533 [TBL] [Abstract][Full Text] [Related]
33. Root hairs increase rhizosphere extension and carbon input to soil. Holz M; Zarebanadkouki M; Kuzyakov Y; Pausch J; Carminati A Ann Bot; 2018 Jan; 121(1):61-69. PubMed ID: 29267846 [TBL] [Abstract][Full Text] [Related]
34. Three-dimensional visualization and quantification of water content in the rhizosphere. Moradi AB; Carminati A; Vetterlein D; Vontobel P; Lehmann E; Weller U; Hopmans JW; Vogel HJ; Oswald SE New Phytol; 2011 Nov; 192(3):653-63. PubMed ID: 21824150 [TBL] [Abstract][Full Text] [Related]
35. Roots at the percolation threshold. Kroener E; Ahmed MA; Carminati A Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Apr; 91(4):042706. PubMed ID: 25974526 [TBL] [Abstract][Full Text] [Related]
36. Genetic control of rhizosheath formation in pearl millet. de la Fuente Cantó C; Diouf MN; Ndour PMS; Debieu M; Grondin A; Passot S; Champion A; Barrachina C; Pratlong M; Gantet P; Assigbetsé K; Kane N; Cubry P; Diedhiou AG; Heulin T; Achouak W; Vigouroux Y; Cournac L; Laplaze L Sci Rep; 2022 Jun; 12(1):9205. PubMed ID: 35655088 [TBL] [Abstract][Full Text] [Related]
37. Drought stress and plant ecotype drive microbiome recruitment in switchgrass rhizosheath. Liu TY; Ye N; Wang X; Das D; Tan Y; You X; Long M; Hu T; Dai L; Zhang J; Chen MX J Integr Plant Biol; 2021 Oct; 63(10):1753-1774. PubMed ID: 34288433 [TBL] [Abstract][Full Text] [Related]
38. An Explicit Structural Model of Root Hair and Soil Interactions Parameterised by Synchrotron X-ray Computed Tomography. Keyes SD; Zygalakis KC; Roose T Bull Math Biol; 2017 Dec; 79(12):2785-2813. PubMed ID: 29030805 [TBL] [Abstract][Full Text] [Related]
39. Reorganisation of rhizosphere soil pore structure by wild plant species in compacted soils. Burr-Hersey JE; Ritz K; Bengough GA; Mooney SJ J Exp Bot; 2020 Oct; 71(19):6107-6115. PubMed ID: 32668003 [TBL] [Abstract][Full Text] [Related]
40. Drought Stress Results in a Compartment-Specific Restructuring of the Rice Root-Associated Microbiomes. Santos-Medellín C; Edwards J; Liechty Z; Nguyen B; Sundaresan V mBio; 2017 Jul; 8(4):. PubMed ID: 28720730 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]