These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
225 related articles for article (PubMed ID: 29774971)
61. Complex Metal Nanostructures with Programmable Shapes from Simple DNA Building Blocks. Ye J; Aftenieva O; Bayrak T; Jain A; König TAF; Erbe A; Seidel R Adv Mater; 2021 Jul; 33(29):e2100381. PubMed ID: 34085729 [TBL] [Abstract][Full Text] [Related]
62. DNA Origami Guided Self-Assembly of Plasmonic Polymers with Robust Long-Range Plasmonic Resonance. Wang P; Huh JH; Park H; Yang D; Zhang Y; Zhang Y; Lee J; Lee S; Ke Y Nano Lett; 2020 Dec; 20(12):8926-8932. PubMed ID: 33186046 [TBL] [Abstract][Full Text] [Related]
63. In-Situ Configuration Studies on Segmented DNA Origami Nanotubes. Zhu B; Guo J; Zhang L; Pan M; Jing X; Wang L; Liu X; Zuo X Chembiochem; 2019 Jun; 20(12):1508-1513. PubMed ID: 30702811 [TBL] [Abstract][Full Text] [Related]
64. DNA origami metallized site specifically to form electrically conductive nanowires. Pearson AC; Liu J; Pound E; Uprety B; Woolley AT; Davis RC; Harb JN J Phys Chem B; 2012 Sep; 116(35):10551-60. PubMed ID: 22578334 [TBL] [Abstract][Full Text] [Related]
65. Quantitative Single-Molecule Surface-Enhanced Raman Scattering by Optothermal Tuning of DNA Origami-Assembled Plasmonic Nanoantennas. Simoncelli S; Roller EM; Urban P; Schreiber R; Turberfield AJ; Liedl T; Lohmüller T ACS Nano; 2016 Nov; 10(11):9809-9815. PubMed ID: 27649370 [TBL] [Abstract][Full Text] [Related]
66. An RNA Paranemic Crossover Triangle as A 3D Module for Cotranscriptional Nanoassembly. Sampedro Vallina N; McRae EKS; Geary C; Andersen ES Small; 2023 Mar; 19(13):e2204651. PubMed ID: 36526605 [TBL] [Abstract][Full Text] [Related]
67. DNA-guided crystallization of colloidal nanoparticles. Nykypanchuk D; Maye MM; van der Lelie D; Gang O Nature; 2008 Jan; 451(7178):549-52. PubMed ID: 18235496 [TBL] [Abstract][Full Text] [Related]
68. Programmable 3D Hexagonal Geometry of DNA Tensegrity Triangles. Lu B; Woloszyn K; Ohayon YP; Yang B; Zhang C; Mao C; Seeman NC; Vecchioni S; Sha R Angew Chem Int Ed Engl; 2023 Feb; 62(6):e202213451. PubMed ID: 36520622 [TBL] [Abstract][Full Text] [Related]
69. Construction and Structure Determination of a Three-Dimensional DNA Crystal. Simmons CR; Zhang F; Birktoft JJ; Qi X; Han D; Liu Y; Sha R; Abdallah HO; Hernandez C; Ohayon YP; Seeman NC; Yan H J Am Chem Soc; 2016 Aug; 138(31):10047-54. PubMed ID: 27447429 [TBL] [Abstract][Full Text] [Related]
70. Overview of DNA origami for molecular self-assembly. Saaem I; LaBean TH Wiley Interdiscip Rev Nanomed Nanobiotechnol; 2013; 5(2):150-62. PubMed ID: 23335504 [TBL] [Abstract][Full Text] [Related]
71. Modular Assembly of Plasmonic Nanoparticles Assisted by DNA Origami. Zhu C; Wang M; Dong J; Zhou C; Wang Q Langmuir; 2018 Dec; 34(49):14963-14968. PubMed ID: 30001143 [TBL] [Abstract][Full Text] [Related]
72. Reconfigurable Three-Dimensional Gold Nanorod Plasmonic Nanostructures Organized on DNA Origami Tripod. Zhan P; Dutta PK; Wang P; Song G; Dai M; Zhao SX; Wang ZG; Yin P; Zhang W; Ding B; Ke Y ACS Nano; 2017 Feb; 11(2):1172-1179. PubMed ID: 28056172 [TBL] [Abstract][Full Text] [Related]
73. 3D Framework DNA Origami with Layered Crossovers. Hong F; Jiang S; Wang T; Liu Y; Yan H Angew Chem Int Ed Engl; 2016 Oct; 55(41):12832-5. PubMed ID: 27628457 [TBL] [Abstract][Full Text] [Related]
74. Low-entropy lattices engineered through bridged DNA origami frames. Gao D; Ma N; Yan X; Ji M; Zhu JJ; Min Q; Tian Y Chem Sci; 2021 Dec; 13(1):283-289. PubMed ID: 35059178 [TBL] [Abstract][Full Text] [Related]
76. Conformational Changes and Flexibility of DNA Devices Observed by Small-Angle X-ray Scattering. Bruetzel LK; Gerling T; Sedlak SM; Walker PU; Zheng W; Dietz H; Lipfert J Nano Lett; 2016 Aug; 16(8):4871-9. PubMed ID: 27356232 [TBL] [Abstract][Full Text] [Related]
77. Understanding the mechanical properties of DNA origami tiles and controlling the kinetics of their folding and unfolding reconfiguration. Chen H; Weng TW; Riccitelli MM; Cui Y; Irudayaraj J; Choi JH J Am Chem Soc; 2014 May; 136(19):6995-7005. PubMed ID: 24749534 [TBL] [Abstract][Full Text] [Related]
78. Design and synthesis of pleated DNA origami nanotubes with adjustable diameters. Berengut JF; Berengut JC; Doye JPK; Prešern D; Kawamoto A; Ruan J; Wainwright MJ; Lee LK Nucleic Acids Res; 2019 Dec; 47(22):11963-11975. PubMed ID: 31728524 [TBL] [Abstract][Full Text] [Related]
79. Dynamically Arranging Gold Nanoparticles on DNA Origami for Molecular Logic Gates. Yang J; Song Z; Liu S; Zhang Q; Zhang C ACS Appl Mater Interfaces; 2016 Aug; 8(34):22451-6. PubMed ID: 27501932 [TBL] [Abstract][Full Text] [Related]
80. Single-stranded templates as railroad tracks for hierarchical assembly of DNA origami. Rahbani JF; Hsu JCC; Chidchob P; Sleiman HF Nanoscale; 2018 Aug; 10(29):13994-13999. PubMed ID: 29995052 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]