These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

230 related articles for article (PubMed ID: 29775124)

  • 21. Stabilization of heavy metals on spent fluid catalytic cracking catalyst using marine clay.
    Sun DD; Tay JH; Qian CE; Lai D
    Water Sci Technol; 2001; 44(10):285-91. PubMed ID: 11794668
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Fungal leaching of valuable metals from a power plant residual ash using Penicillium simplicissimum: Evaluation of thermal pretreatment and different bioleaching methods.
    Rasoulnia P; Mousavi SM; Rastegar SO; Azargoshasb H
    Waste Manag; 2016 Jun; 52():309-17. PubMed ID: 27095291
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Two stage leaching of activated spent HDS catalyst and solvent extraction of aluminium using organo-phosphinic extractant, Cyanex 272.
    Park KH; Mohapatra D; Nam CW
    J Hazard Mater; 2007 Sep; 148(1-2):287-95. PubMed ID: 17363155
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Nickel recovery from spent Raneynickel catalyst through dilute sulfuric acid leaching and soda ash precipitation.
    Lee JY; Rao SV; Kumar BN; Kang DJ; Reddy BR
    J Hazard Mater; 2010 Apr; 176(1-3):1122-5. PubMed ID: 20018448
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Simultaneous recovery of vanadium and nickel from power plant fly-ash: optimization of parameters using response surface methodology.
    Nazari E; Rashchi F; Saba M; Mirazimi SM
    Waste Manag; 2014 Dec; 34(12):2687-96. PubMed ID: 25269818
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Bio-dissolution of Ni, V and Mo from spent petroleum catalyst using iron oxidizing bacteria.
    Pradhan D; Kim DJ; Roychaudhury G; Lee SW
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2010; 45(4):476-82. PubMed ID: 20390893
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Sequential biological process for molybdenum extraction from hydrodesulphurization spent catalyst.
    Vyas S; Ting YP
    Chemosphere; 2016 Oct; 160():7-12. PubMed ID: 27351900
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Extraction of molybdenum and vanadium from the spent diesel exhaust catalyst by ammonia leaching method.
    Zhao Z; Guo M; Zhang M
    J Hazard Mater; 2015 Apr; 286():402-9. PubMed ID: 25603289
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Kinetics of Mo, Ni, V and Al leaching from a spent hydrodesulphurization catalyst in a solution containing oxalic acid and hydrogen peroxide.
    Szymczycha-Madeja A
    J Hazard Mater; 2011 Feb; 186(2-3):2157-61. PubMed ID: 21167639
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Fungal bioleaching of metals from refinery spent catalysts: A critical review of current research, challenges, and future directions.
    Pathak A; Kothari R; Vinoba M; Habibi N; Tyagi VV
    J Environ Manage; 2021 Feb; 280():111789. PubMed ID: 33370668
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Process development for recovery of vanadium and nickel from an industrial solid waste by a leaching-solvent extraction technique.
    Barik SP; Park KH; Nam CW
    J Environ Manage; 2014 Dec; 146():22-28. PubMed ID: 25156262
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Techno-economic feasibility of a recycling plant for the extraction of metals and boehmite from hazardous petroleum spent catalysts.
    Marafi M; Pathak A; Rana MS
    Environ Sci Pollut Res Int; 2024 Mar; 31(11):17339-17353. PubMed ID: 38337119
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Bioleaching of spent fluid catalytic cracking catalyst using Aspergillus niger.
    Aung KM; Ting YP
    J Biotechnol; 2005 Mar; 116(2):159-70. PubMed ID: 15664080
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Potential use of
    Gómez-Ramírez M; Rojas-Avelizapa NG; Hernández-Gama R; Tenorio-Sánchez SA; López-Villegas EO
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2019; 54(8):701-710. PubMed ID: 31094278
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Effective Recovery of Vanadium from Oil Refinery Waste into Vanadium-Based Metal-Organic Frameworks.
    Zhan G; Ng WC; Lin WY; Koh SN; Wang CH
    Environ Sci Technol; 2018 Mar; 52(5):3008-3015. PubMed ID: 29401380
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Bioleaching of metals from spent refinery petroleum catalyst using moderately thermophilic bacteria: effect of particle size.
    Srichandan H; Singh S; Pathak A; Kim DJ; Lee SW; Heyes G
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2014; 49(7):807-18. PubMed ID: 24679088
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Heavy metal leaching from aerobic and anaerobic landfill bioreactors of co-disposed municipal solid waste incineration bottom ash and shredded low-organic residues.
    Inanc B; Inoue Y; Yamada M; Ono Y; Nagamori M
    J Hazard Mater; 2007 Mar; 141(3):793-802. PubMed ID: 17030419
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Recycling of waste spent catalyst in road construction and masonry blocks.
    Taha R; Al-Kamyani Z; Al-Jabri K; Baawain M; Al-Shamsi K
    J Hazard Mater; 2012 Aug; 229-230():122-7. PubMed ID: 22704771
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Metal removal and morphological changes of B. megaterium in the presence of a spent catalyst.
    Rivas-Castillo AM; Guatemala-Cisneros ME; Gómez-Ramírez M; Rojas-Avelizapa NG
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2019; 54(6):533-540. PubMed ID: 30755080
    [TBL] [Abstract][Full Text] [Related]  

  • 40. [Selective recovery of copper, zinc and nickel from printed circuit boards by ammonia leaching under pressure].
    Wang M; Cao HB; Zhang Y
    Huan Jing Ke Xue; 2011 Feb; 32(2):596-602. PubMed ID: 21528589
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.