These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
118 related articles for article (PubMed ID: 29775146)
1. Setting pressure can change the size and shape of MRI artifacts caused by adjustable shunt valves: a study of the 4 newest models. Uchida D; Amano Y; Nakatogawa H; Masui T; Ando N; Nakayama T; Sato H; Sameshima T; Tanaka T J Neurosurg; 2019 Apr; 130(4):1260-1267. PubMed ID: 29775146 [TBL] [Abstract][Full Text] [Related]
2. Unexpectedly Smaller Artifacts of 3.0-T Magnetic Resonance Imaging than 1.5 T: Recommendation of 3.0-T Scanners for Patients with Magnet-Resistant Adjustable Ventriculoperitoneal Shunt Devices. Amano Y; Kuroda N; Uchida D; Sakakura Y; Nakatogawa H; Ando N; Nakayama T; Sato H; Masui T; Sameshima T; Tanaka T World Neurosurg; 2019 Oct; 130():e393-e399. PubMed ID: 31260847 [TBL] [Abstract][Full Text] [Related]
3. Spinal magnetic resonance imaging artifacts in lumboperitoneal shunt surgery using adjustable valve implantation on the paravertebral spinal muscles. Tanaka T; Sashida R; Hirokawa Y; Wakamiya T; Michiwaki Y; Shimoji K; Suehiro E; Onoda K; Yamane F; Matsuno A; Morimoto T J Med Invest; 2024; 71(1.2):154-157. PubMed ID: 38735712 [TBL] [Abstract][Full Text] [Related]
4. Magnetic field interactions in adjustable hydrocephalus shunts. Lavinio A; Harding S; Van Der Boogaard F; Czosnyka M; Smielewski P; Richards HK; Pickard JD; Czosnyka ZH J Neurosurg Pediatr; 2008 Sep; 2(3):222-8. PubMed ID: 18759607 [TBL] [Abstract][Full Text] [Related]
6. Transcutaneous pressure-adjustable valves and magnetic resonance imaging: an ex vivo examination of the Codman-Medos programmable valve and the Sophy adjustable pressure valve. Ortler M; Kostron H; Felber S Neurosurgery; 1997 May; 40(5):1050-7; discussion 1057-8. PubMed ID: 9149264 [TBL] [Abstract][Full Text] [Related]
7. [Effect of magnetic fields from home-use magnetic induction therapy apparatuses on adjustable cerebrospinal fluid shunt valves]. Nakashima K; Oishi A; Itokawa H; Fujimoto M No Shinkei Geka; 2010 Aug; 38(8):725-9. PubMed ID: 20697146 [TBL] [Abstract][Full Text] [Related]
8. Safety and function of programmable ventriculo-peritoneal shunt valves: An in vitro 7 Tesla magnetic resonance imaging study. Chen B; Dammann P; Jabbarli R; Sure U; Quick HH; Kraff O; Wrede KH PLoS One; 2023; 18(10):e0292666. PubMed ID: 37819939 [TBL] [Abstract][Full Text] [Related]
9. Adjustable cerebrospinal fluid shunt valves in 3.0-Tesla MRI: a phantom study using explanted devices. Akbar M; Aschoff A; Georgi JC; Nennig E; Heiland S; Abel R; Stippich C Rofo; 2010 Jul; 182(7):594-602. PubMed ID: 20563954 [TBL] [Abstract][Full Text] [Related]
10. Effect of transcranial magnetic stimulation on four types of pressure-programmable valves. Lefranc M; Ko JY; Peltier J; Fichten A; Desenclos C; Macron JM; Toussaint P; Le Gars D; Petitjean M Acta Neurochir (Wien); 2010 Apr; 152(4):689-97. PubMed ID: 19957091 [TBL] [Abstract][Full Text] [Related]
11. Programmable shunt valves: in vitro assessment of safety of the magnetic field generated by a portable game machine. Nakashima K; Nakajo T; Kawamo M; Kato A; Ishigaki S; Murakami H; Imaizumi Y; Izumiyama H Neurol Med Chir (Tokyo); 2011; 51(9):635-8. PubMed ID: 21946726 [TBL] [Abstract][Full Text] [Related]
12. Field strength difference in extent of artifacts induced by CERTAS Plus valves in patients with idiopathic normal pressure hydrocephalus. Camerucci E; Elder BD; Shu Y; Messina SA; Gunter JL; Graff-Radford J; Jones DT; Botha H; Cutsforth-Gregory JK; Jack CR; Huston J; Cogswell PM Neuroradiol J; 2023 Dec; 36(6):665-673. PubMed ID: 37118867 [TBL] [Abstract][Full Text] [Related]
14. Interactions between programmable shunt valves and the iPad 3 with Smart Cover. He Y; Murphy RK; Roland JL; Limbrick DD Childs Nerv Syst; 2013 Apr; 29(4):531-3. PubMed ID: 23423659 [TBL] [Abstract][Full Text] [Related]
15. Interactions between programmable shunt valves and magnetically controlled growing rods for scoliosis. Larrew T; Alshareef M; Murphy RF; Eskandari R; Kosnik Infinger L J Neurosurg Pediatr; 2020 Dec; 26(6):667-670. PubMed ID: 33007746 [TBL] [Abstract][Full Text] [Related]
16. From fixed-pressure paediGAV to programmable proGAV/proSA serial valves for pediatric hydrocephalus within the 1st year of life: a technical single-center analysis. Teping F; Huelser M; Sippl C; Zemlin M; Oertel J J Neurosurg Pediatr; 2023 Jun; 31(6):536-544. PubMed ID: 36933264 [TBL] [Abstract][Full Text] [Related]
17. Effect of 3-tesla magnetic resonance imaging on various pressure programmable shunt valves. Inoue T; Kuzu Y; Ogasawara K; Ogawa A J Neurosurg; 2005 Aug; 103(2 Suppl):163-5. PubMed ID: 16370283 [TBL] [Abstract][Full Text] [Related]
18. Programmable shunts and headphones: Are they safe together? Spader HS; Ratanaprasatporn L; Morrison JF; Grossberg JA; Cosgrove GR J Neurosurg Pediatr; 2015 Oct; 16(4):402-5. PubMed ID: 26149436 [TBL] [Abstract][Full Text] [Related]
19. Magnetic resonance imaging artifacts caused by aneurysm clips and shunt valves: dependence on field strength (1.5 and 3 T) and imaging parameters. Olsrud J; Lätt J; Brockstedt S; Romner B; Björkman-Burtscher IM J Magn Reson Imaging; 2005 Sep; 22(3):433-7. PubMed ID: 16104008 [TBL] [Abstract][Full Text] [Related]
20. Investigation of the hydrodynamic properties of a new MRI-resistant programmable hydrocephalus shunt. Allin DM; Czosnyka M; Richards HK; Pickard JD; Czosnyka ZH Cerebrospinal Fluid Res; 2008 Apr; 5():8. PubMed ID: 18426562 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]