These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
251 related articles for article (PubMed ID: 29775181)
1. Porous lithium-doped hydroxyapatite scaffold seeded with hypoxia-preconditioned bone-marrow mesenchymal stem cells for bone-tissue regeneration. Li D; Huifang L; Zhao J; Yang Z; Xie X; Wei Z; Li D; Kang P Biomed Mater; 2018 Jun; 13(5):055002. PubMed ID: 29775181 [TBL] [Abstract][Full Text] [Related]
2. In vivo evaluation of porous lithium-doped hydroxyapatite scaffolds for the treatment of bone defect. Luo Y; Li D; Zhao J; Yang Z; Kang P Biomed Mater Eng; 2018; 29(6):699-721. PubMed ID: 30282329 [TBL] [Abstract][Full Text] [Related]
3. Porous, lithium-doped calcium polyphosphate composite scaffolds containing vascular endothelial growth factor (VEGF)-loaded gelatin microspheres for treating glucocorticoid-induced osteonecrosis of the femoral head. Luo Y; Li D; Xie X; Kang P Biomed Mater; 2019 Apr; 14(3):035013. PubMed ID: 30802884 [TBL] [Abstract][Full Text] [Related]
4. Enhanced bone defect repairing effects in glucocorticoid-induced osteonecrosis of the femoral head using a porous nano-lithium-hydroxyapatite/gelatin microsphere/erythropoietin composite scaffold. Li D; Xie X; Yang Z; Wang C; Wei Z; Kang P Biomater Sci; 2018 Feb; 6(3):519-537. PubMed ID: 29369309 [TBL] [Abstract][Full Text] [Related]
5. Transplantation of copper-doped calcium polyphosphate scaffolds combined with copper (II) preconditioned bone marrow mesenchymal stem cells for bone defect repair. Li Y; Wang J; Wang Y; Du W; Wang S J Biomater Appl; 2018 Jan; 32(6):738-753. PubMed ID: 29295641 [TBL] [Abstract][Full Text] [Related]
6. Supercritical CO Li S; Song C; Yang S; Yu W; Zhang W; Zhang G; Xi Z; Lu E Acta Biomater; 2019 Aug; 94():253-267. PubMed ID: 31154054 [TBL] [Abstract][Full Text] [Related]
7. Evaluation of the degradation, biocompatibility and osteogenesis behavior of lithium-doped calcium polyphosphate for bone tissue engineering. Ma Y; Li Y; Hao J; Ma B; Di T; Dong H Biomed Mater Eng; 2019; 30(1):23-36. PubMed ID: 30530956 [TBL] [Abstract][Full Text] [Related]
8. Evaluation of adenoviral vascular endothelial growth factor-activated chitosan/hydroxyapatite scaffold for engineering vascularized bone tissue using human osteoblasts: In vitro and in vivo studies. Koç A; Finkenzeller G; Elçin AE; Stark GB; Elçin YM J Biomater Appl; 2014 Nov; 29(5):748-60. PubMed ID: 25062670 [TBL] [Abstract][Full Text] [Related]
9. Porous copper- and lithium-doped nano-hydroxyapatite composite scaffold promotes angiogenesis and bone regeneration in the repair of glucocorticoids-induced osteonecrosis of the femoral head. Li B; Lei Y; Hu Q; Li D; Zhao H; Kang P Biomed Mater; 2021 Sep; 16(6):. PubMed ID: 34492640 [TBL] [Abstract][Full Text] [Related]
10. The osteogenesis of bone marrow stem cells on mPEG-PCL-mPEG/hydroxyapatite composite scaffold via solid freeform fabrication. Liao HT; Chen YY; Lai YT; Hsieh MF; Jiang CP Biomed Res Int; 2014; 2014():321549. PubMed ID: 24868523 [TBL] [Abstract][Full Text] [Related]
11. Acceleration of segmental bone regeneration in a rabbit model by strontium-doped calcium polyphosphate scaffold through stimulating VEGF and bFGF secretion from osteoblasts. Gu Z; Zhang X; Li L; Wang Q; Yu X; Feng T Mater Sci Eng C Mater Biol Appl; 2013 Jan; 33(1):274-81. PubMed ID: 25428072 [TBL] [Abstract][Full Text] [Related]
12. Blood vessel formation in the tissue-engineered bone with the constitutively active form of HIF-1α mediated BMSCs. Zou D; Zhang Z; He J; Zhang K; Ye D; Han W; Zhou J; Wang Y; Li Q; Liu X; Zhang X; Wang S; Hu J; Zhu C; Zhang W; zhou Y; Fu H; Huang Y; Jiang X Biomaterials; 2012 Mar; 33(7):2097-108. PubMed ID: 22172336 [TBL] [Abstract][Full Text] [Related]
13. Novel hydroxyapatite/chitosan bilayered scaffold for osteochondral tissue-engineering applications: Scaffold design and its performance when seeded with goat bone marrow stromal cells. Oliveira JM; Rodrigues MT; Silva SS; Malafaya PB; Gomes ME; Viegas CA; Dias IR; Azevedo JT; Mano JF; Reis RL Biomaterials; 2006 Dec; 27(36):6123-37. PubMed ID: 16945410 [TBL] [Abstract][Full Text] [Related]
15. Tissue-engineered composite scaffold of poly(lactide-co-glycolide) and hydroxyapatite nanoparticles seeded with autologous mesenchymal stem cells for bone regeneration. Zhang B; Zhang PB; Wang ZL; Lyu ZW; Wu H J Zhejiang Univ Sci B; 2017 Nov.; 18(11):963-976. PubMed ID: 29119734 [TBL] [Abstract][Full Text] [Related]
16. Role of Wnt/beta-catenin signaling pathway in epithelial-mesenchymal transition of human prostate cancer induced by hypoxia-inducible factor-1alpha. Jiang YG; Luo Y; He DL; Li X; Zhang LL; Peng T; Li MC; Lin YH Int J Urol; 2007 Nov; 14(11):1034-9. PubMed ID: 17956532 [TBL] [Abstract][Full Text] [Related]
17. Sema3A and HIF1α co-overexpressed iPSC-MSCs/HA scaffold facilitates the repair of calvarial defect in a mouse model. Li J; Wang T; Li C; Wang Z; Wang P; Zheng L J Cell Physiol; 2020 Oct; 235(10):6754-6766. PubMed ID: 32012286 [TBL] [Abstract][Full Text] [Related]
18. Hypoxia Enhanced Bone Regeneration Through the HIF-1α/β-Catenin Pathway in Femoral Head Osteonecrosis. Zhao H; Yeersheng R; Xia Y; Kang P; Wang W Am J Med Sci; 2021 Jul; 362(1):78-91. PubMed ID: 33727018 [TBL] [Abstract][Full Text] [Related]
19. Ectopic bone regeneration by human bone marrow mononucleated cells, undifferentiated and osteogenically differentiated bone marrow mesenchymal stem cells in beta-tricalcium phosphate scaffolds. Ye X; Yin X; Yang D; Tan J; Liu G Tissue Eng Part C Methods; 2012 Jul; 18(7):545-56. PubMed ID: 22250840 [TBL] [Abstract][Full Text] [Related]
20. Hypoxia-mimicking mesoporous bioactive glass scaffolds with controllable cobalt ion release for bone tissue engineering. Wu C; Zhou Y; Fan W; Han P; Chang J; Yuen J; Zhang M; Xiao Y Biomaterials; 2012 Mar; 33(7):2076-85. PubMed ID: 22177618 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]