These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 29775247)

  • 1. Self-Assembly of Antisite Defectless nano-LiFePO
    Wang H; Liu L; Wang R; Yan X; Wang Z; Hu J; Chen H; Jiang S; Ni L; Qiu H; Tang H; Wei Y; Zhang Z; Qiu S; Pan F
    ChemSusChem; 2018 Jul; 11(13):2255-2261. PubMed ID: 29775247
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mesoporous carbon-coated LiFePO4 nanocrystals co-modified with graphene and Mg2+ doping as superior cathode materials for lithium ion batteries.
    Wang B; Xu B; Liu T; Liu P; Guo C; Wang S; Wang Q; Xiong Z; Wang D; Zhao XS
    Nanoscale; 2014 Jan; 6(2):986-95. PubMed ID: 24287590
    [TBL] [Abstract][Full Text] [Related]  

  • 3. One-Step Microwave Synthesis of Micro/Nanoscale LiFePO
    Liu S; Yan P; Li H; Zhang X; Sun W
    Front Chem; 2020; 8():104. PubMed ID: 32161747
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Morphology-controlled synthesis of self-assembled LiFePO4/C/RGO for high-performance Li-ion batteries.
    Lin M; Chen Y; Chen B; Wu X; Kam K; Lu W; Chan HL; Yuan J
    ACS Appl Mater Interfaces; 2014 Oct; 6(20):17556-63. PubMed ID: 25233480
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Core-shell LiFePO4 /carbon-coated reduced graphene oxide hybrids for high-power lithium-ion battery cathodes.
    Ha SH; Lee YJ
    Chemistry; 2015 Jan; 21(5):2132-8. PubMed ID: 25430976
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Improved Cycle Stability and Rate Capability of Graphene Oxide Wrapped Tavorite LiFeSO₄F as Cathode Material for Lithium-Ion Batteries.
    Guo Z; Zhang D; Qiu H; Zhang T; Fu Q; Zhang L; Yan X; Meng X; Chen G; Wei Y
    ACS Appl Mater Interfaces; 2015 Jul; 7(25):13972-9. PubMed ID: 26067155
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hierarchical LiFePO4/C microspheres with high tap density assembled by nanosheets as cathode materials for high-performance Li-ion batteries.
    Wei W; Chen D; Wang R; Guo L
    Nanotechnology; 2012 Nov; 23(47):475401. PubMed ID: 23117189
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fabrication of graphene embedded LiFePO₄ using a catalyst assisted self assembly method as a cathode material for high power lithium-ion batteries.
    Kim W; Ryu W; Han D; Lim S; Eom J; Kwon H
    ACS Appl Mater Interfaces; 2014 Apr; 6(7):4731-6. PubMed ID: 24621267
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhancement of the Rate Capability of LiFePO4 by a New Highly Graphitic Carbon-Coating Method.
    Song J; Sun B; Liu H; Ma Z; Chen Z; Shao G; Wang G
    ACS Appl Mater Interfaces; 2016 Jun; 8(24):15225-31. PubMed ID: 27238368
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electrochemical characteristics of lithium iron phosphate with multi-walled carbon nanotube for lithium polymer batteries.
    Jin EM; Jin B; Park KH; Gu HB; Park GC; Kim KW
    J Nanosci Nanotechnol; 2008 Oct; 8(10):5057-61. PubMed ID: 19198390
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Superior lithium-ion insertion/extraction properties of a novel LiFePO
    Duan W; Zhao M; Shen J; Zhao S; Song X
    Dalton Trans; 2017 Sep; 46(36):12019-12026. PubMed ID: 28853483
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A chemically activated graphene-encapsulated LiFePO4 composite for high-performance lithium ion batteries.
    Ha J; Park SK; Yu SH; Jin A; Jang B; Bong S; Kim I; Sung YE; Piao Y
    Nanoscale; 2013 Sep; 5(18):8647-55. PubMed ID: 23897269
    [TBL] [Abstract][Full Text] [Related]  

  • 13. LiFePO4 Nanostructures Fabricated from Iron(III) Phosphate (FePO4 x 2H2O) by Hydrothermal Method.
    Saji VS; Song HK
    J Nanosci Nanotechnol; 2015 Jan; 15(1):734-41. PubMed ID: 26328435
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Solution deposition of thin carbon coatings on LiFePO₄.
    Zhu J; Yoo K; El-Halees I; Kisailus D
    ACS Appl Mater Interfaces; 2014 Dec; 6(23):21550-7. PubMed ID: 25387242
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In situ catalytic synthesis of high-graphitized carbon-coated LiFePO4 nanoplates for superior Li-ion battery cathodes.
    Ma Z; Fan Y; Shao G; Wang G; Song J; Liu T
    ACS Appl Mater Interfaces; 2015 Feb; 7(4):2937-43. PubMed ID: 25584530
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Graphene oxide assisted template-free synthesis of nanoscale splode-like NiCo
    Rong H; Jiang Z; Tian X; Qin Y; Cheng S; Wang F; Jiang ZJ
    J Colloid Interface Sci; 2018 Feb; 511():119-127. PubMed ID: 29017097
    [TBL] [Abstract][Full Text] [Related]  

  • 17. LiFePO
    Peng Y; Zeng L; Dai S; Liu F; Rao X; Zhang Y
    RSC Adv; 2023 Feb; 13(10):6983-6992. PubMed ID: 36874933
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synthesis of lithium iron phosphate/carbon microspheres by using polyacrylic acid coated iron phosphate nanoparticles derived from iron(III) acrylate.
    Xu D; He YB; Chu X; Ding Z; Li B; He J; Du H; Qin X; Kang F
    ChemSusChem; 2015 Mar; 8(6):1009-16. PubMed ID: 25469674
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mesoporous Hybrids of Reduced Graphene Oxide and Vanadium Pentoxide for Enhanced Performance in Lithium-Ion Batteries and Electrochemical Capacitors.
    Pandey GP; Liu T; Brown E; Yang Y; Li Y; Sun XS; Fang Y; Li J
    ACS Appl Mater Interfaces; 2016 Apr; 8(14):9200-10. PubMed ID: 27010675
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Boron and Nitrogen Codoped Carbon Layers of LiFePO4 Improve the High-Rate Electrochemical Performance for Lithium Ion Batteries.
    Zhang J; Nie N; Liu Y; Wang J; Yu F; Gu J; Li W
    ACS Appl Mater Interfaces; 2015 Sep; 7(36):20134-43. PubMed ID: 26305802
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.