These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 29775287)

  • 1. Computational Prediction and Analysis for Tyrosine Post-Translational Modifications via Elastic Net.
    Cao M; Chen G; Wang L; Wen P; Shi S
    J Chem Inf Model; 2018 Jun; 58(6):1272-1281. PubMed ID: 29775287
    [TBL] [Abstract][Full Text] [Related]  

  • 2. PredSulSite: prediction of protein tyrosine sulfation sites with multiple features and analysis.
    Huang SY; Shi SP; Qiu JD; Sun XY; Suo SB; Liang RP
    Anal Biochem; 2012 Sep; 428(1):16-23. PubMed ID: 22691961
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Computational prediction and analysis of species-specific fungi phosphorylation via feature optimization strategy.
    Cao M; Chen G; Yu J; Shi S
    Brief Bioinform; 2020 Mar; 21(2):595-608. PubMed ID: 30590490
    [TBL] [Abstract][Full Text] [Related]  

  • 4. ProAcePred: prokaryote lysine acetylation sites prediction based on elastic net feature optimization.
    Chen G; Cao M; Luo K; Wang L; Wen P; Shi S
    Bioinformatics; 2018 Dec; 34(23):3999-4006. PubMed ID: 29868863
    [TBL] [Abstract][Full Text] [Related]  

  • 5. PTM-ssMP: A Web Server for Predicting Different Types of Post-translational Modification Sites Using Novel Site-specific Modification Profile.
    Liu Y; Wang M; Xi J; Luo F; Li A
    Int J Biol Sci; 2018; 14(8):946-956. PubMed ID: 29989096
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Prediction and functional analysis of prokaryote lysine acetylation site by incorporating six types of features into Chou's general PseAAC.
    Chen G; Cao M; Yu J; Guo X; Shi S
    J Theor Biol; 2019 Jan; 461():92-101. PubMed ID: 30365945
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Systematic analysis of the in situ crosstalk of tyrosine modifications reveals no additional natural selection on multiply modified residues.
    Pan Z; Liu Z; Cheng H; Wang Y; Gao T; Ullah S; Ren J; Xue Y
    Sci Rep; 2014 Dec; 4():7331. PubMed ID: 25476580
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Accurately predicting nitrosylated tyrosine sites using probabilistic sequence information.
    Rahman A; Ahmed S; Al Mehedi Hasan M; Ahmad S; Dehzangi I
    Gene; 2022 Jun; 826():146445. PubMed ID: 35358650
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bioinformatics analysis reveals biophysical and evolutionary insights into the 3-nitrotyrosine post-translational modification in the human proteome.
    Ng JY; Boelen L; Wong JW
    Open Biol; 2013 Feb; 3(2):120148. PubMed ID: 23389939
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Determination of the sites of tyrosine O-sulfation in peptides and proteins.
    Yu Y; Hoffhines AJ; Moore KL; Leary JA
    Nat Methods; 2007 Jul; 4(7):583-8. PubMed ID: 17558413
    [TBL] [Abstract][Full Text] [Related]  

  • 11. PredNTS: Improved and Robust Prediction of Nitrotyrosine Sites by Integrating Multiple Sequence Features.
    Nilamyani AN; Auliah FN; Moni MA; Shoombuatong W; Hasan MM; Kurata H
    Int J Mol Sci; 2021 Mar; 22(5):. PubMed ID: 33800121
    [TBL] [Abstract][Full Text] [Related]  

  • 12. DeepNitro: Prediction of Protein Nitration and Nitrosylation Sites by Deep Learning.
    Xie Y; Luo X; Li Y; Chen L; Ma W; Huang J; Cui J; Zhao Y; Xue Y; Zuo Z; Ren J
    Genomics Proteomics Bioinformatics; 2018 Aug; 16(4):294-306. PubMed ID: 30268931
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Predicting sulfotyrosine sites using the random forest algorithm with significantly improved prediction accuracy.
    Yang ZR
    BMC Bioinformatics; 2009 Oct; 10():361. PubMed ID: 19874585
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mutli-Features Prediction of Protein Translational Modification Sites.
    Bao W; Yuan CA; Zhang Y; Han K; Nandi AK; Honig B; Huang DS
    IEEE/ACM Trans Comput Biol Bioinform; 2018; 15(5):1453-1460. PubMed ID: 28961121
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A novel network-based computational method to predict protein phosphorylation on tyrosine sites.
    Wang B; Wang M; Jiang Y; Sun D; Xu X
    J Bioinform Comput Biol; 2015 Dec; 13(6):1542005. PubMed ID: 26781824
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Multifeatures Fusion and Discrete Firefly Optimization Method for Prediction of Protein Tyrosine Sulfation Residues.
    Guo S; Liu C; Zhou P; Li Y
    Biomed Res Int; 2016; 2016():8151509. PubMed ID: 27034949
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization and prediction of positional 4-hydroxyproline and sulfotyrosine, two post-translational modifications that can occur at substantial levels in CHO cells-expressed biotherapeutics.
    Tyshchuk O; Gstöttner C; Funk D; Nicolardi S; Frost S; Klostermann S; Becker T; Jolkver E; Schumacher F; Koller CF; Völger HR; Wuhrer M; Bulau P; Mølhøj M
    MAbs; 2019 Oct; 11(7):1219-1232. PubMed ID: 31339437
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Prediction of phosphorylation sites based on Krawtchouk image moments.
    Wang X; Xu ML; Li BQ; Zhai HL; Liu JJ; Li SY
    Proteins; 2017 Dec; 85(12):2231-2238. PubMed ID: 28921635
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Predicting phosphorylation sites using machine learning by integrating the sequence, structure, and functional information of proteins.
    Jamal S; Ali W; Nagpal P; Grover A; Grover S
    J Transl Med; 2021 May; 19(1):218. PubMed ID: 34030700
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A novel sequence-based method for phosphorylation site prediction with feature selection and analysis.
    He ZS; Shi XH; Kong XY; Zhu YB; Chou KC
    Protein Pept Lett; 2012 Jan; 19(1):70-8. PubMed ID: 21919857
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.