These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 29775287)

  • 21. PrAS: Prediction of amidation sites using multiple feature extraction.
    Wang T; Zheng W; Wuyun Q; Wu Z; Ruan J; Hu G; Gao J
    Comput Biol Chem; 2017 Feb; 66():57-62. PubMed ID: 27918921
    [TBL] [Abstract][Full Text] [Related]  

  • 22. AutoMotif server: prediction of single residue post-translational modifications in proteins.
    Plewczynski D; Tkacz A; Wyrwicz LS; Rychlewski L
    Bioinformatics; 2005 May; 21(10):2525-7. PubMed ID: 15728119
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Prediction of posttranslational modification sites from amino acid sequences with kernel methods.
    Xu Y; Wang X; Wang Y; Tian Y; Shao X; Wu LY; Deng N
    J Theor Biol; 2014 Mar; 344():78-87. PubMed ID: 24291233
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Site selectivity for protein tyrosine nitration: insights from features of structure and topological network.
    Cheng S; Lian B; Liang J; Shi T; Xie L; Zhao YL
    Mol Biosyst; 2013 Nov; 9(11):2860-8. PubMed ID: 24056708
    [TBL] [Abstract][Full Text] [Related]  

  • 25. NTyroSite: Computational Identification of Protein Nitrotyrosine Sites Using Sequence Evolutionary Features.
    Hasan MM; Khatun MS; Mollah MNH; Yong C; Dianjing G
    Molecules; 2018 Jul; 23(7):. PubMed ID: 29987232
    [TBL] [Abstract][Full Text] [Related]  

  • 26. dbPTM: an information repository of protein post-translational modification.
    Lee TY; Huang HD; Hung JH; Huang HY; Yang YS; Wang TH
    Nucleic Acids Res; 2006 Jan; 34(Database issue):D622-7. PubMed ID: 16381945
    [TBL] [Abstract][Full Text] [Related]  

  • 27. pNitro-Tyr-PseAAC: Predict Nitrotyrosine Sites in Proteins by Incorporating Five Features into Chou's General PseAAC.
    Ghauri AW; Khan YD; Rasool N; Khan SA; Chou KC
    Curr Pharm Des; 2018; 24(34):4034-4043. PubMed ID: 30479209
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Accurate in silico prediction of species-specific methylation sites based on information gain feature optimization.
    Wen PP; Shi SP; Xu HD; Wang LN; Qiu JD
    Bioinformatics; 2016 Oct; 32(20):3107-3115. PubMed ID: 27354692
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Homogeneous sulfopeptides and sulfoproteins: synthetic approaches and applications to characterize the effects of tyrosine sulfation on biochemical function.
    Stone MJ; Payne RJ
    Acc Chem Res; 2015 Aug; 48(8):2251-61. PubMed ID: 26196117
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Accurate in silico identification of protein succinylation sites using an iterative semi-supervised learning technique.
    Zhao X; Ning Q; Chai H; Ma Z
    J Theor Biol; 2015 Jun; 374():60-5. PubMed ID: 25843215
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Prediction of Nitrated Tyrosine Residues in Protein Sequences by Extreme Learning Machine and Feature Selection Methods.
    Chen L; Wang S; Zhang YH; Wei L; Xu X; Huang T; Cai YD
    Comb Chem High Throughput Screen; 2018; 21(6):393-402. PubMed ID: 29848272
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Biological selectivity and functional aspects of protein tyrosine nitration.
    Ischiropoulos H
    Biochem Biophys Res Commun; 2003 Jun; 305(3):776-83. PubMed ID: 12763060
    [TBL] [Abstract][Full Text] [Related]  

  • 33. predCar-site: Carbonylation sites prediction in proteins using support vector machine with resolving data imbalanced issue.
    Hasan MA; Li J; Ahmad S; Molla MK
    Anal Biochem; 2017 May; 525():107-113. PubMed ID: 28286168
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Computational methods for ubiquitination site prediction using physicochemical properties of protein sequences.
    Cai B; Jiang X
    BMC Bioinformatics; 2016 Mar; 17():116. PubMed ID: 26940649
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A machine learning strategy for predicting localization of post-translational modification sites in protein-protein interacting regions.
    Saethang T; Payne DM; Avihingsanon Y; Pisitkun T
    BMC Bioinformatics; 2016 Aug; 17(1):307. PubMed ID: 27534850
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Structure-based prediction of post-translational modification cross-talk within proteins using complementary residue- and residue pair-based features.
    Liu HF; Liu R
    Brief Bioinform; 2020 Mar; 21(2):609-620. PubMed ID: 30649184
    [TBL] [Abstract][Full Text] [Related]  

  • 37. RAM-PGK: Prediction of Lysine Phosphoglycerylation Based on Residue Adjacency Matrix.
    Chandra AA; Sharma A; Dehzangi A; Tsunoda T
    Genes (Basel); 2020 Dec; 11(12):. PubMed ID: 33419274
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Computational prediction of NO-dependent posttranslational modifications in plants: Current status and perspectives.
    Kolbert Z; Lindermayr C
    Plant Physiol Biochem; 2021 Oct; 167():851-861. PubMed ID: 34536898
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Prediction of protein N-formylation using the composition of k-spaced amino acid pairs.
    Ju Z; Cao JZ
    Anal Biochem; 2017 Oct; 534():40-45. PubMed ID: 28709899
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Predicting Post-Translational Modifications from Local Sequence Fragments Using Machine Learning Algorithms: Overview and Best Practices.
    Tatjewski M; Kierczak M; Plewczynski D
    Methods Mol Biol; 2017; 1484():275-300. PubMed ID: 27787833
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.