These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 29775313)

  • 21. Reaction path potential for complex systems derived from combined ab initio quantum mechanical and molecular mechanical calculations.
    Lu Z; Yang W
    J Chem Phys; 2004 Jul; 121(1):89-100. PubMed ID: 15260525
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Cooperativity and Frustration Effects (or Lack Thereof) in Polarizable and Non-polarizable Force Fields.
    Nochebuena J; Piquemal JP; Liu S; Cisneros GA
    J Chem Theory Comput; 2023 Nov; 19(21):7715-7730. PubMed ID: 37888874
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Quantum mechanical fragment methods based on partitioning atoms or partitioning coordinates.
    Wang B; Yang KR; Xu X; Isegawa M; Leverentz HR; Truhlar DG
    Acc Chem Res; 2014 Sep; 47(9):2731-8. PubMed ID: 24841937
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Development of a polarizable force field for proteins via ab initio quantum chemistry: first generation model and gas phase tests.
    Kaminski GA; Stern HA; Berne BJ; Friesner RA; Cao YX; Murphy RB; Zhou R; Halgren TA
    J Comput Chem; 2002 Dec; 23(16):1515-31. PubMed ID: 12395421
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Building quantum mechanics quality force fields of proteins with the generalized energy-based fragmentation approach and machine learning.
    Cheng Z; Du J; Zhang L; Ma J; Li W; Li S
    Phys Chem Chem Phys; 2022 Jan; 24(3):1326-1337. PubMed ID: 34718360
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Machine Learning Force Field Parameters from Ab Initio Data.
    Li Y; Li H; Pickard FC; Narayanan B; Sen FG; Chan MKY; Sankaranarayanan SKRS; Brooks BR; Roux B
    J Chem Theory Comput; 2017 Sep; 13(9):4492-4503. PubMed ID: 28800233
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Combining Force Fields and Neural Networks for an Accurate Representation of Chemically Diverse Molecular Interactions.
    Illarionov A; Sakipov S; Pereyaslavets L; Kurnikov IV; Kamath G; Butin O; Voronina E; Ivahnenko I; Leontyev I; Nawrocki G; Darkhovskiy M; Olevanov M; Cherniavskyi YK; Lock C; Greenslade S; Sankaranarayanan SK; Kurnikova MG; Potoff J; Kornberg RD; Levitt M; Fain B
    J Am Chem Soc; 2023 Nov; 145(43):23620-23629. PubMed ID: 37856313
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Assessment of an Electrostatic Energy-Based Charge Model for Modeling the Electrostatic Interactions in Water Solvent.
    Wang X; Wang Y; Guo M; Wang X; Li Y; Zhang JZH
    J Chem Theory Comput; 2023 Sep; 19(18):6294-6312. PubMed ID: 37656610
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Comparison of charge models for fixed-charge force fields: small-molecule hydration free energies in explicit solvent.
    Mobley DL; Dumont E; Chodera JD; Dill KA
    J Phys Chem B; 2007 Mar; 111(9):2242-54. PubMed ID: 17291029
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Determination of Electrostatic Parameters for a Polarizable Force Field Based on the Classical Drude Oscillator.
    Anisimov VM; Lamoureux G; Vorobyov IV; Huang N; Roux B; MacKerell AD
    J Chem Theory Comput; 2005 Jan; 1(1):153-68. PubMed ID: 26641126
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Generalized energy-based fragmentation approach and its applications to macromolecules and molecular aggregates.
    Li S; Li W; Ma J
    Acc Chem Res; 2014 Sep; 47(9):2712-20. PubMed ID: 24873495
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Electrostatically Embedded Many-Body Expansion for Large Systems, with Applications to Water Clusters.
    Dahlke EE; Truhlar DG
    J Chem Theory Comput; 2007 Jan; 3(1):46-53. PubMed ID: 26627150
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Ab initio based polarizable force field parametrization.
    Masia M
    J Chem Phys; 2008 May; 128(18):184107. PubMed ID: 18532799
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Toward Building Protein Force Fields by Residue-Based Systematic Molecular Fragmentation and Neural Network.
    Wang H; Yang W
    J Chem Theory Comput; 2019 Feb; 15(2):1409-1417. PubMed ID: 30550274
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Investigation of base pairs containing oxidized guanine using ab initio method and ABEEMσπ polarizable force field.
    Liu C; Wang Y; Zhao D; Gong L; Yang Z
    J Mol Graph Model; 2014 Feb; 47():62-76. PubMed ID: 24322440
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Benchmarking Force Field and the ANI Neural Network Potentials for the Torsional Potential Energy Surface of Biaryl Drug Fragments.
    Lahey SJ; Thien Phuc TN; Rowley CN
    J Chem Inf Model; 2020 Dec; 60(12):6258-6268. PubMed ID: 33263401
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Effective force fields for condensed phase systems from ab initio molecular dynamics simulation: a new method for force-matching.
    Izvekov S; Parrinello M; Burnham CJ; Voth GA
    J Chem Phys; 2004 Jun; 120(23):10896-913. PubMed ID: 15268120
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A Polarizable Atomic Multipole-Based Force Field for Molecular Dynamics Simulations of Anionic Lipids.
    Chu H; Peng X; Li Y; Zhang Y; Li G
    Molecules; 2017 Dec; 23(1):. PubMed ID: 29301229
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Polarizable Transferable Anisotropic United-Atom Force Field Based on the Mie Potential for Phase Equilibria: Ethers, n-Alkanes, and Nitrogen.
    Waibel C; Gross J
    J Chem Theory Comput; 2019 Apr; 15(4):2561-2573. PubMed ID: 30811184
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Global Optimization of the Lennard-Jones Parameters for the Drude Polarizable Force Field.
    Rupakheti CR; MacKerell AD; Roux B
    J Chem Theory Comput; 2021 Nov; 17(11):7085-7095. PubMed ID: 34609863
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.