These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
230 related articles for article (PubMed ID: 29775319)
1. Operando Evidence for a Universal Oxygen Evolution Mechanism on Thermal and Electrochemical Iridium Oxides. Saveleva VA; Wang L; Teschner D; Jones T; Gago AS; Friedrich KA; Zafeiratos S; Schlögl R; Savinova ER J Phys Chem Lett; 2018 Jun; 9(11):3154-3160. PubMed ID: 29775319 [TBL] [Abstract][Full Text] [Related]
2. Progress of Nonprecious-Metal-Based Electrocatalysts for Oxygen Evolution in Acidic Media. Gao J; Tao H; Liu B Adv Mater; 2021 Aug; 33(31):e2003786. PubMed ID: 34169587 [TBL] [Abstract][Full Text] [Related]
3. Progress of Heterogeneous Iridium-Based Water Oxidation Catalysts. Gao J; Liu Y; Liu B; Huang KW ACS Nano; 2022 Nov; 16(11):17761-17777. PubMed ID: 36355040 [TBL] [Abstract][Full Text] [Related]
4. Recent Research on Iridium-Based Electrocatalysts for Acidic Oxygen Evolution Reaction from the Origin of Reaction Mechanism. Chen L; Zhao W; Zhang J; Liu M; Jia Y; Wang R; Chai M Small; 2024 Oct; 20(43):e2403845. PubMed ID: 38940392 [TBL] [Abstract][Full Text] [Related]
5. Non-iridium-based electrocatalyst for durable acidic oxygen evolution reaction in proton exchange membrane water electrolysis. Wu ZY; Chen FY; Li B; Yu SW; Finfrock YZ; Meira DM; Yan QQ; Zhu P; Chen MX; Song TW; Yin Z; Liang HW; Zhang S; Wang G; Wang H Nat Mater; 2023 Jan; 22(1):100-108. PubMed ID: 36266572 [TBL] [Abstract][Full Text] [Related]
6. Highly active nano-sized iridium catalysts: synthesis and Lettenmeier P; Majchel J; Wang L; Saveleva VA; Zafeiratos S; Savinova ER; Gallet JJ; Bournel F; Gago AS; Friedrich KA Chem Sci; 2018 Apr; 9(14):3570-3579. PubMed ID: 29780489 [TBL] [Abstract][Full Text] [Related]
7. Multistage Electron Distribution Engineering of Iridium Oxide by Codoping W and Sn for Enhanced Acidic Water Oxidation Electrocatalysis. He J; Fu G; Zhang J; Xu P; Sun J Small; 2022 Oct; 18(41):e2203365. PubMed ID: 36089667 [TBL] [Abstract][Full Text] [Related]
8. Molecular Analysis of the Unusual Stability of an IrNbO Spöri C; Falling LJ; Kroschel M; Brand C; Bonakdarpour A; Kühl S; Berger D; Gliech M; Jones TE; Wilkinson DP; Strasser P ACS Appl Mater Interfaces; 2021 Jan; 13(3):3748-3761. PubMed ID: 33442973 [TBL] [Abstract][Full Text] [Related]
9. IrO Yan T; Chen S; Sun W; Liu Y; Pan L; Shi C; Zhang X; Huang ZF; Zou JJ ACS Appl Mater Interfaces; 2023 Feb; 15(5):6912-6922. PubMed ID: 36718123 [TBL] [Abstract][Full Text] [Related]
10. Effect of Calcination Temperature on the Activity of Unsupported IrO Banti A; Papazisi KM; Balomenou S; Tsiplakides D Molecules; 2023 Aug; 28(15):. PubMed ID: 37570796 [TBL] [Abstract][Full Text] [Related]
11. Recent Progress in Advanced Electrocatalyst Design for Acidic Oxygen Evolution Reaction. Li L; Wang P; Shao Q; Huang X Adv Mater; 2021 Dec; 33(50):e2004243. PubMed ID: 33749035 [TBL] [Abstract][Full Text] [Related]
12. In-situ spectroscopic observation of dynamic-coupling oxygen on atomically dispersed iridium electrocatalyst for acidic water oxidation. Su H; Zhou W; Zhou W; Li Y; Zheng L; Zhang H; Liu M; Zhang X; Sun X; Xu Y; Hu F; Zhang J; Hu T; Liu Q; Wei S Nat Commun; 2021 Oct; 12(1):6118. PubMed ID: 34675195 [TBL] [Abstract][Full Text] [Related]
13. Breaking Long-Range Order in Iridium Oxide by Alkali Ion for Efficient Water Oxidation. Gao J; Xu CQ; Hung SF; Liu W; Cai W; Zeng Z; Jia C; Chen HM; Xiao H; Li J; Huang Y; Liu B J Am Chem Soc; 2019 Feb; 141(7):3014-3023. PubMed ID: 30673269 [TBL] [Abstract][Full Text] [Related]
14. Monitoring the Structural Changes in Iridium Nanoparticles during Oxygen Evolution Electrocatalysis with Pittkowski RK; Punke S; Anker AS; Bornet A; Magnard NPL; Schlegel N; Graversen LG; Quinson J; Dworzak A; Oezaslan M; Kirkensgaard JJK; Mirolo M; Drnec J; Arenz M; Jensen KMØ J Am Chem Soc; 2024 Oct; 146(40):27517-27527. PubMed ID: 39344255 [TBL] [Abstract][Full Text] [Related]
16. Application of In Situ Techniques for the Characterization of NiFe-Based Oxygen Evolution Reaction (OER) Electrocatalysts. Zhu K; Zhu X; Yang W Angew Chem Int Ed Engl; 2019 Jan; 58(5):1252-1265. PubMed ID: 29665168 [TBL] [Abstract][Full Text] [Related]
17. The electronic structure of iridium oxide electrodes active in water splitting. Pfeifer V; Jones TE; Velasco Vélez JJ; Massué C; Greiner MT; Arrigo R; Teschner D; Girgsdies F; Scherzer M; Allan J; Hashagen M; Weinberg G; Piccinin S; Hävecker M; Knop-Gericke A; Schlögl R Phys Chem Chem Phys; 2016 Jan; 18(4):2292-6. PubMed ID: 26700139 [TBL] [Abstract][Full Text] [Related]
18. Increasing Iridium Oxide Activity for the Oxygen Evolution Reaction with Hafnium Modification. Zhao F; Wen B; Niu W; Chen Z; Yan C; Selloni A; Tully CG; Yang X; Koel BE J Am Chem Soc; 2021 Sep; 143(38):15616-15623. PubMed ID: 34469132 [TBL] [Abstract][Full Text] [Related]
19. Nanostructured Ir-supported on Ti4O7 as a cost-effective anode for proton exchange membrane (PEM) electrolyzers. Wang L; Lettenmeier P; Golla-Schindler U; Gazdzicki P; Cañas NA; Morawietz T; Hiesgen R; Hosseiny SS; Gago AS; Friedrich KA Phys Chem Chem Phys; 2016 Feb; 18(6):4487-95. PubMed ID: 26791108 [TBL] [Abstract][Full Text] [Related]
20. Nanosized IrO(x)-Ir Catalyst with Relevant Activity for Anodes of Proton Exchange Membrane Electrolysis Produced by a Cost-Effective Procedure. Lettenmeier P; Wang L; Golla-Schindler U; Gazdzicki P; Cañas NA; Handl M; Hiesgen R; Hosseiny SS; Gago AS; Friedrich KA Angew Chem Int Ed Engl; 2016 Jan; 55(2):742-6. PubMed ID: 26616747 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]