These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 29775402)

  • 1. A note on Poisson goodness-of-fit tests for ionizing radiation induced chromosomal aberration samples.
    Higueras M; González JE; Di Giorgio M; Barquinero JF
    Int J Radiat Biol; 2018 Jul; 94(7):656-663. PubMed ID: 29775402
    [TBL] [Abstract][Full Text] [Related]  

  • 2. AN EXACT GOODNESS-OF-FIT TEST BASED ON THE OCCUPANCY PROBLEMS TO STUDY ZERO-INFLATION AND ZERO-DEFLATION IN BIOLOGICAL DOSIMETRY DATA.
    Fernández-Fontelo A; Puig P; Ainsbury EA; Higueras M
    Radiat Prot Dosimetry; 2018 Jun; 179(4):317-326. PubMed ID: 29342297
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chromosomal biodosimetry by unfolding a mixed Poisson distribution: a generalized model.
    Sasaki MS
    Int J Radiat Biol; 2003 Feb; 79(2):83-97. PubMed ID: 12569012
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Poisson goodness-of-fit tests for radiation-induced chromosome aberrations.
    Merkle W
    Int J Radiat Biol Relat Stud Phys Chem Med; 1981 Dec; 40(6):685-92. PubMed ID: 6978305
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A comparison of six statistical distributions for analysis of chromosome aberration data for radiation biodosimetry.
    Ainsbury EA; Vinnikov VA; Maznyk NA; Lloyd DC; Rothkamm K
    Radiat Prot Dosimetry; 2013 Jul; 155(3):253-67. PubMed ID: 23325781
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Zero-inflated regression models for radiation-induced chromosome aberration data: A comparative study.
    Oliveira M; Einbeck J; Higueras M; Ainsbury E; Puig P; Rothkamm K
    Biom J; 2016 Mar; 58(2):259-79. PubMed ID: 26461836
    [TBL] [Abstract][Full Text] [Related]  

  • 7. radir package: an R implementation for cytogenetic biodosimetry dose estimation.
    Moriña D; Higueras M; Puig P; Ainsbury EA; Rothkamm K
    J Radiol Prot; 2015 Sep; 35(3):557-69. PubMed ID: 26160852
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Radiation damages in human lymphocytes studied by micronucleus and chromosomal analysis].
    Koliubaeva SN; Raketskaia VV; Borisova EA; Komar VE
    Radiats Biol Radioecol; 1995; 35(2):150-6. PubMed ID: 7757176
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cell survival and chromosomal aberrations in CHO-K1 cells irradiated by carbon ions.
    Czub J; Banaś D; Błaszczyk A; Braziewicz J; Buraczewska I; Choiński J; Górak U; Jaskóła M; Korman A; Lankoff A; Lisowska H; Łukaszek A; Szefliński Z; Wójcik A
    Appl Radiat Isot; 2009 Mar; 67(3):447-53. PubMed ID: 18676154
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Chromosomal instability parameters in the population affected by nuclear explosions at the Semipalatinsk nuclear test site].
    Abil'dinova GZh; Kuleshov NP; Sviatova GS
    Genetika; 2003 Aug; 39(8):1123-7. PubMed ID: 14515470
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Complex chromosome aberrations persist in individuals many years after occupational exposure to densely ionizing radiation: an mFISH study.
    Hande MP; Azizova TV; Burak LE; Khokhryakov VF; Geard CR; Brenner DJ
    Genes Chromosomes Cancer; 2005 Sep; 44(1):1-9. PubMed ID: 15912529
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Estimating partial-body ionizing radiation exposure by automated cytogenetic biodosimetry.
    Shirley BC; Knoll JHM; Moquet J; Ainsbury E; Pham ND; Norton F; Wilkins RC; Rogan PK
    Int J Radiat Biol; 2020 Nov; 96(11):1492-1503. PubMed ID: 32910711
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fluorescence in situ hybridisation in detecting chromosome aberrations caused by occupational exposure to ionising radiation.
    Zeljezić D; Garaj-Vrhovac V
    Arh Hig Rada Toksikol; 2006 Mar; 57(1):65-8. PubMed ID: 16605168
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Biological indication and dosimetry of unstable chromosome aberration frequencies in human lymphocytes].
    Baryliak IR; D'omina EA
    Tsitol Genet; 2004; 38(1):72-85. PubMed ID: 15098451
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Statistical methods in regression and calibration analysis of chromosome aberration data.
    Merkle W
    Radiat Environ Biophys; 1983; 21(3):217-33. PubMed ID: 6844550
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Impact of radiation quality on the spectrum of induced chromosome exchange aberrations.
    Boei JJ; Vermeulen S; Mullenders LH; Natarajan AT
    Int J Radiat Biol; 2001 Aug; 77(8):847-57. PubMed ID: 11571018
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Foundations of identifying individual chromosomes by imaging flow cytometry with applications in radiation biodosimetry.
    Beaton-Green LA; Rodrigues MA; Lachapelle S; Wilkins RC
    Methods; 2017 Jan; 112():18-24. PubMed ID: 27524557
    [TBL] [Abstract][Full Text] [Related]  

  • 18. CytoBayesJ: software tools for Bayesian analysis of cytogenetic radiation dosimetry data.
    Ainsbury EA; Vinnikov V; Puig P; Maznyk N; Rothkamm K; Lloyd DC
    Mutat Res; 2013 Aug; 756(1-2):184-91. PubMed ID: 23792213
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inter-chromosomal variation in aberration frequencies in human lymphocytes exposed to charged particles of LET between 0.5 and 55 keV/μm.
    Deperas-Kaminska M; Zaytseva EM; Deperas-Standylo J; Mitsyn GV; Molokanov AG; Timoshenko GN; Wojcik A
    Int J Radiat Biol; 2010 Nov; 86(11):975-85. PubMed ID: 20670111
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Review of Bayesian statistical analysis methods for cytogenetic radiation biodosimetry, with a practical example.
    Ainsbury EA; Vinnikov VA; Puig P; Higueras M; Maznyk NA; Lloyd DC; Rothkamm K
    Radiat Prot Dosimetry; 2014 Dec; 162(3):185-96. PubMed ID: 24282320
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.