These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
433 related articles for article (PubMed ID: 29775730)
1. An integrated biomanufacturing platform for the large-scale expansion and neuronal differentiation of human pluripotent stem cell-derived neural progenitor cells. Srinivasan G; Morgan D; Varun D; Brookhouser N; Brafman DA Acta Biomater; 2018 Jul; 74():168-179. PubMed ID: 29775730 [TBL] [Abstract][Full Text] [Related]
2. A robust vitronectin-derived peptide for the scalable long-term expansion and neuronal differentiation of human pluripotent stem cell (hPSC)-derived neural progenitor cells (hNPCs). Varun D; Srinivasan GR; Tsai YH; Kim HJ; Cutts J; Petty F; Merkley R; Stephanopoulos N; Dolezalova D; Marsala M; Brafman DA Acta Biomater; 2017 Jan; 48():120-130. PubMed ID: 27989923 [TBL] [Abstract][Full Text] [Related]
3. A chemically defined substrate for the expansion and neuronal differentiation of human pluripotent stem cell-derived neural progenitor cells. Tsai Y; Cutts J; Kimura A; Varun D; Brafman DA Stem Cell Res; 2015 Jul; 15(1):75-87. PubMed ID: 26002631 [TBL] [Abstract][Full Text] [Related]
4. Scalable Expansion of Human Pluripotent Stem Cell-Derived Neural Progenitors in Stirred Suspension Bioreactor Under Xeno-free Condition. Nemati S; Abbasalizadeh S; Baharvand H Methods Mol Biol; 2016; 1502():143-58. PubMed ID: 26867543 [TBL] [Abstract][Full Text] [Related]
5. Generation of Neural Progenitor Spheres from Human Pluripotent Stem Cells in a Suspension Bioreactor. Yan Y; Song L; Tsai AC; Ma T; Li Y Methods Mol Biol; 2016; 1502():119-28. PubMed ID: 26837215 [TBL] [Abstract][Full Text] [Related]
6. Expansion of human neural precursor cells in large-scale bioreactors for the treatment of neurodegenerative disorders. Baghbaderani BA; Behie LA; Sen A; Mukhida K; Hong M; Mendez I Biotechnol Prog; 2008; 24(4):859-70. PubMed ID: 18380486 [TBL] [Abstract][Full Text] [Related]
7. Microcarrier-based platforms for in vitro expansion and differentiation of human pluripotent stem cells in bioreactor culture systems. Badenes SM; Fernandes TG; Rodrigues CAV; Diogo MM; Cabral JMS J Biotechnol; 2016 Sep; 234():71-82. PubMed ID: 27480342 [TBL] [Abstract][Full Text] [Related]
8. Efficient derivation of human neuronal progenitors and neurons from pluripotent human embryonic stem cells with small molecule induction. Parsons XH; Teng YD; Parsons JF; Snyder EY; Smotrich DB; Moore DA J Vis Exp; 2011 Oct; (56):e3273. PubMed ID: 22064669 [TBL] [Abstract][Full Text] [Related]
9. Facile engineering of xeno-free microcarriers for the scalable cultivation of human pluripotent stem cells in stirred suspension. Fan Y; Hsiung M; Cheng C; Tzanakakis ES Tissue Eng Part A; 2014 Feb; 20(3-4):588-99. PubMed ID: 24098972 [TBL] [Abstract][Full Text] [Related]
10. Generation of Regionally Specific Neural Progenitor Cells (NPCs) and Neurons from Human Pluripotent Stem Cells (hPSCs). Cutts J; Brookhouser N; Brafman DA Methods Mol Biol; 2016; 1516():121-144. PubMed ID: 27106497 [TBL] [Abstract][Full Text] [Related]
11. Generation, Expansion, and Differentiation of Human Pluripotent Stem Cell (hPSC) Derived Neural Progenitor Cells (NPCs). Brafman DA Methods Mol Biol; 2015; 1212():87-102. PubMed ID: 25063499 [TBL] [Abstract][Full Text] [Related]
12. Bioprocess development for mass production of size-controlled human pluripotent stem cell aggregates in stirred suspension bioreactor. Abbasalizadeh S; Larijani MR; Samadian A; Baharvand H Tissue Eng Part C Methods; 2012 Nov; 18(11):831-51. PubMed ID: 22559864 [TBL] [Abstract][Full Text] [Related]
13. Superior Red Blood Cell Generation from Human Pluripotent Stem Cells Through a Novel Microcarrier-Based Embryoid Body Platform. Sivalingam J; Lam AT; Chen HY; Yang BX; Chen AK; Reuveny S; Loh YH; Oh SK Tissue Eng Part C Methods; 2016 Aug; 22(8):765-80. PubMed ID: 27392822 [TBL] [Abstract][Full Text] [Related]
14. Accelerated and Improved Differentiation of Retinal Organoids from Pluripotent Stem Cells in Rotating-Wall Vessel Bioreactors. DiStefano T; Chen HY; Panebianco C; Kaya KD; Brooks MJ; Gieser L; Morgan NY; Pohida T; Swaroop A Stem Cell Reports; 2018 Jan; 10(1):300-313. PubMed ID: 29233554 [TBL] [Abstract][Full Text] [Related]
15. An intermittent rocking platform for integrated expansion and differentiation of human pluripotent stem cells to cardiomyocytes in suspended microcarrier cultures. Ting S; Chen A; Reuveny S; Oh S Stem Cell Res; 2014 Sep; 13(2):202-13. PubMed ID: 25043964 [TBL] [Abstract][Full Text] [Related]
16. Microcarrier suspension cultures for high-density expansion and differentiation of human pluripotent stem cells to neural progenitor cells. Bardy J; Chen AK; Lim YM; Wu S; Wei S; Weiping H; Chan K; Reuveny S; Oh SK Tissue Eng Part C Methods; 2013 Feb; 19(2):166-80. PubMed ID: 22834957 [TBL] [Abstract][Full Text] [Related]
17. Culturing and applications of rotating wall vessel bioreactor derived 3D epithelial cell models. Radtke AL; Herbst-Kralovetz MM J Vis Exp; 2012 Apr; (62):. PubMed ID: 22491366 [TBL] [Abstract][Full Text] [Related]