These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 29776023)

  • 1. Enhancement of the water flow velocity through carbon nanotubes resulting from the radius dependence of the friction due to electron excitations.
    Sokoloff JB
    Phys Rev E; 2018 Mar; 97(3-1):033107. PubMed ID: 29776023
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of electronic friction from the walls on water flow in carbon nanotubes and on water desalination.
    Sokoloff JB
    Phys Rev E; 2019 Aug; 100(2-1):023112. PubMed ID: 31574735
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Water Flow in Single-Wall Nanotubes: Oxygen Makes It Slip, Hydrogen Makes It Stick.
    Thiemann FL; Schran C; Rowe P; Müller EA; Michaelides A
    ACS Nano; 2022 Jul; 16(7):10775-10782. PubMed ID: 35726839
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Capillary filling with giant liquid/solid slip: dynamics of water uptake by carbon nanotubes.
    Joly L
    J Chem Phys; 2011 Dec; 135(21):214705. PubMed ID: 22149809
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Theory of the force of friction acting on water chains flowing through carbon nanotubes.
    Sokoloff JB; Lau AWC
    Phys Rev E; 2023 May; 107(5-2):055101. PubMed ID: 37329021
    [TBL] [Abstract][Full Text] [Related]  

  • 6. How fast does water flow in carbon nanotubes?
    Kannam SK; Todd BD; Hansen JS; Daivis PJ
    J Chem Phys; 2013 Mar; 138(9):094701. PubMed ID: 23485316
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Water flow in carbon nanotubes: the role of tube chirality.
    Sam A; K VP; Sathian SP
    Phys Chem Chem Phys; 2019 Mar; 21(12):6566-6573. PubMed ID: 30849155
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular Friction-Induced Electroosmotic Phenomena in Thin Neutral Nanotubes.
    Vuković L; Vokac E; Král P
    J Phys Chem Lett; 2014 Jun; 5(12):2131-7. PubMed ID: 26270504
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Water transport inside carbon nanotubes mediated by phonon-induced oscillating friction.
    Ma M; Grey F; Shen L; Urbakh M; Wu S; Liu JZ; Liu Y; Zheng Q
    Nat Nanotechnol; 2015 Aug; 10(8):692-5. PubMed ID: 26149236
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nanoscale fluid-structure interaction: flow resistance and energy transfer between water and carbon nanotubes.
    Chen C; Ma M; Jin K; Liu JZ; Shen L; Zheng Q; Xu Z
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Oct; 84(4 Pt 2):046314. PubMed ID: 22181268
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Friction of water slipping in carbon nanotubes.
    Ma MD; Shen L; Sheridan J; Liu JZ; Chen C; Zheng Q
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Mar; 83(3 Pt 2):036316. PubMed ID: 21517596
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fluctuation-induced quantum friction in nanoscale water flows.
    Kavokine N; Bocquet ML; Bocquet L
    Nature; 2022 Feb; 602(7895):84-90. PubMed ID: 35110760
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hydrodynamic properties of carbon nanotubes.
    Walther JH; Werder T; Jaffe RL; Koumoutsakos P
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Jun; 69(6 Pt 1):062201. PubMed ID: 15244641
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Boron nitride and carbon double-wall hetero-nanotubes: first-principles calculation of electronic properties.
    Pan H; Feng YP; Lin J
    Nanotechnology; 2008 Mar; 19(9):095707. PubMed ID: 21817689
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enhancement of friction between carbon nanotubes: an efficient strategy to strengthen fibers.
    Zhang X; Li Q
    ACS Nano; 2010 Jan; 4(1):312-6. PubMed ID: 20020757
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electron interactions and scaling relations for optical excitations in carbon nanotubes.
    Kane CL; Mele EJ
    Phys Rev Lett; 2004 Nov; 93(19):197402. PubMed ID: 15600877
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mott insulating state in ultraclean carbon nanotubes.
    Deshpande VV; Chandra B; Caldwell R; Novikov DS; Hone J; Bockrath M
    Science; 2009 Jan; 323(5910):106-10. PubMed ID: 19119228
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Prediction of fluid slip in cylindrical nanopores using equilibrium molecular simulations.
    Sam A; Hartkamp R; Kannam SK; Sathian SP
    Nanotechnology; 2018 Nov; 29(48):485404. PubMed ID: 30207542
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enhancement of oil flow in shale nanopores by manipulating friction and viscosity.
    Ho TA; Wang Y
    Phys Chem Chem Phys; 2019 Jun; 21(24):12777-12786. PubMed ID: 31120076
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Adhesion and size dependent friction anisotropy in boron nitride nanotubes.
    Chiu HC; Dogan S; Volkmann M; Klinke C; Riedo E
    Nanotechnology; 2012 Nov; 23(45):455706. PubMed ID: 23089557
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.