These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 29776036)

  • 21. Three-Dimensional Model for Electrospinning Processes in Controlled Gas Counterflow.
    Lauricella M; Pisignano D; Succi S
    J Phys Chem A; 2016 Jul; 120(27):4884-92. PubMed ID: 26859532
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Electrospinning of polymer nanofibres from multiple jets on a porous tubular surface.
    Dosunmu OO; Chase GG; Kataphinan W; Reneker DH
    Nanotechnology; 2006 Feb; 17(4):1123-7. PubMed ID: 21727391
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Nonlinear Stability of an Electrified Interface Supporting Surface Charges between Two Viscous Fluids.
    El-Dib YO
    J Colloid Interface Sci; 1999 Feb; 210(1):103-117. PubMed ID: 9924112
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Nanojets, electrospray, and ion field evaporation: molecular dynamics simulations and laboratory experiments.
    Luedtke WD; Landman U; Chiu YH; Levandier DJ; Dressler RA; Sok S; Gordon MS
    J Phys Chem A; 2008 Oct; 112(40):9628-49. PubMed ID: 18828572
    [TBL] [Abstract][Full Text] [Related]  

  • 25. AC electrified jets in a flow-focusing device: Jet length scaling.
    Castro-Hernández E; García-Sánchez P; Alzaga-Gimeno J; Tan SH; Baret JC; Ramos A
    Biomicrofluidics; 2016 Jul; 10(4):043504. PubMed ID: 27375826
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Numerical simulations of electrostatically driven jets from nonviscous droplets.
    Garzon M; Gray LJ; Sethian JA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Mar; 89(3):033011. PubMed ID: 24730941
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Entropic lattice Boltzmann method for multiphase flows: Fluid-solid interfaces.
    Mazloomi M A; Chikatamarla SS; Karlin IV
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Aug; 92(2):023308. PubMed ID: 26382547
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Non-Newtonian flow effects on the coalescence and mixing of initially stationary droplets of shear-thinning fluids.
    Sun K; Wang T; Zhang P; Law CK
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Feb; 91(2):023009. PubMed ID: 25768599
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Pulsation of electrified jet in capillary microfluidics.
    Li X; Wei S; Chen L; Qu G; Zhang H; Liu Z; Wang L; Kong T; Wang T
    Sci Rep; 2017 Jul; 7(1):5673. PubMed ID: 28720845
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Finite-element lattice Boltzmann simulations of contact line dynamics.
    Matin R; Krzysztof Misztal M; Hernández-García A; Mathiesen J
    Phys Rev E; 2018 Jan; 97(1-1):013307. PubMed ID: 29448363
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Theory of the lattice Boltzmann method: three-dimensional model for linear viscoelastic fluids.
    Lallemand P; D'Humières D; Luo LS; Rubinstein R
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Feb; 67(2 Pt 1):021203. PubMed ID: 12636662
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Entropic lattice Boltzmann model for Burgers's equation.
    Boghosian BM; Love P; Yepez J
    Philos Trans A Math Phys Eng Sci; 2004 Aug; 362(1821):1691-701. PubMed ID: 15306440
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Entropic multirelaxation lattice Boltzmann models for turbulent flows.
    Bösch F; Chikatamarla SS; Karlin IV
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Oct; 92(4):043309. PubMed ID: 26565366
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Deformation of a droplet in an electric field: nonlinear transient response in perfect and leaky dielectric media.
    Supeene G; Koch CR; Bhattacharjee S
    J Colloid Interface Sci; 2008 Feb; 318(2):463-76. PubMed ID: 17997406
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Electric field induced instabilities of thin leaky bilayers: pathways to unique morphologies and miniaturization.
    Mondal K; Kumar P; Bandyopadhyay D
    J Chem Phys; 2013 Jan; 138(2):024705. PubMed ID: 23320711
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Breakup of an electrified, perfectly conducting, viscous thread in an AC field.
    Conroy DT; Matar OK; Craster RV; Papageorgiou DT
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Jun; 83(6 Pt 2):066314. PubMed ID: 21797484
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Modeling the transport of nanoparticle-filled binary fluids through micropores.
    Ma Y; Bhattacharya A; Kuksenok O; Perchak D; Balazs AC
    Langmuir; 2012 Aug; 28(31):11410-21. PubMed ID: 22780304
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Application of the synthetic jet concept to low Reynolds number biosensor microfluidic flows for enhanced mixing: a numerical study using the lattice Boltzmann method.
    Mautner T
    Biosens Bioelectron; 2004 Jun; 19(11):1409-19. PubMed ID: 15093212
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Crossover of varicose and whipping instabilities in electrified microjets.
    Yang W; Duan H; Li C; Deng W
    Phys Rev Lett; 2014 Feb; 112(5):054501. PubMed ID: 24580601
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Modeling the flow of fluid/particle mixtures in microchannels: encapsulating nanoparticles within monodisperse droplets.
    Verberg R; Yeomans JM; Balazs AC
    J Chem Phys; 2005 Dec; 123(22):224706. PubMed ID: 16375494
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.