These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
150 related articles for article (PubMed ID: 29776047)
1. Dynamic evolution of Rayleigh-Taylor bubbles from sinusoidal, W-shaped, and random perturbations. Zhou ZR; Zhang YS; Tian BL Phys Rev E; 2018 Mar; 97(3-1):033108. PubMed ID: 29776047 [TBL] [Abstract][Full Text] [Related]
2. Single-mode dynamics of the Rayleigh-Taylor instability at any density ratio. Ramaprabhu P; Dimonte G Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Mar; 71(3 Pt 2B):036314. PubMed ID: 15903581 [TBL] [Abstract][Full Text] [Related]
3. Dependence of turbulent Rayleigh-Taylor instability on initial perturbations. Dimonte G Phys Rev E Stat Nonlin Soft Matter Phys; 2004 May; 69(5 Pt 2):056305. PubMed ID: 15244930 [TBL] [Abstract][Full Text] [Related]
4. Limits of the potential flow approach to the single-mode Rayleigh-Taylor problem. Ramaprabhu P; Dimonte G; Young YN; Calder AC; Fryxell B Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Dec; 74(6 Pt 2):066308. PubMed ID: 17280149 [TBL] [Abstract][Full Text] [Related]
5. Late-time quadratic growth in single-mode Rayleigh-Taylor instability. Wei T; Livescu D Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Oct; 86(4 Pt 2):046405. PubMed ID: 23214698 [TBL] [Abstract][Full Text] [Related]
6. A three-dimensional renormalization group bubble merger model for Rayleigh-Taylor mixing. Cheng B; Glimm J; Sharp DH Chaos; 2002 Jun; 12(2):267-274. PubMed ID: 12779554 [TBL] [Abstract][Full Text] [Related]
7. Bubble interaction model for hydrodynamic unstable mixing. Sohn SI Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Jun; 75(6 Pt 2):066312. PubMed ID: 17677362 [TBL] [Abstract][Full Text] [Related]
8. Lattice Boltzmann simulation of three-dimensional Rayleigh-Taylor instability. Liang H; Li QX; Shi BC; Chai ZH Phys Rev E; 2016 Mar; 93(3):033113. PubMed ID: 27078453 [TBL] [Abstract][Full Text] [Related]
9. Observation of self-similar behavior of the 3D, nonlinear Rayleigh-Taylor instability. Sadot O; Smalyuk VA; Delettrez JA; Meyerhofer DD; Sangster TC; Betti R; Goncharov VN; Shvarts D Phys Rev Lett; 2005 Dec; 95(26):265001. PubMed ID: 16486364 [TBL] [Abstract][Full Text] [Related]
10. Rayleigh-Taylor instability with complex acceleration history. Dimonte G; Ramaprabhu P; Andrews M Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Oct; 76(4 Pt 2):046313. PubMed ID: 17995112 [TBL] [Abstract][Full Text] [Related]
11. Effect of the Rayleigh-Taylor instability on maximum reachable temperatures in laser-induced bubbles. Rechiman LM; Bonetto FJ; Rosselló JM Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Aug; 86(2 Pt 2):027301. PubMed ID: 23005890 [TBL] [Abstract][Full Text] [Related]
12. The density ratio dependence of self-similar Rayleigh-Taylor mixing. Youngs DL Philos Trans A Math Phys Eng Sci; 2013 Nov; 371(2003):20120173. PubMed ID: 24146005 [TBL] [Abstract][Full Text] [Related]
13. Equation of state for He bubbles in W and model of He bubble growth and bursting near W{100} surfaces derived from molecular dynamics simulations. Setyawan W; Dasgupta D; Blondel S; Nandipati G; Hammond KD; Maroudas D; Wirth BD Sci Rep; 2023 Jun; 13(1):9601. PubMed ID: 37311783 [TBL] [Abstract][Full Text] [Related]
14. Acceleration- and deceleration-phase nonlinear Rayleigh-Taylor growth at spherical interfaces. Clark DS; Tabak M Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Nov; 72(5 Pt 2):056308. PubMed ID: 16383746 [TBL] [Abstract][Full Text] [Related]
15. Nonlinear excitation of the ablative Rayleigh-Taylor instability for all wave numbers. Zhang H; Betti R; Gopalaswamy V; Yan R; Aluie H Phys Rev E; 2018 Jan; 97(1-1):011203. PubMed ID: 29448450 [TBL] [Abstract][Full Text] [Related]
16. Density dependence of a Zufiria-type model for Rayleigh-Taylor bubble fronts. Sohn SI Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Oct; 70(4 Pt 2):045301. PubMed ID: 15600452 [TBL] [Abstract][Full Text] [Related]
17. Understanding the structure of the turbulent mixing layer in hydrodynamic instabilities. Laney D; Bremer PT; Mascarenhas A; Miller P; Pascucci V IEEE Trans Vis Comput Graph; 2006; 12(5):1053-60. PubMed ID: 17080834 [TBL] [Abstract][Full Text] [Related]
18. New directions for Rayleigh-Taylor mixing. Glimm J; Sharp DH; Kaman T; Lim H Philos Trans A Math Phys Eng Sci; 2013 Nov; 371(2003):20120183. PubMed ID: 24146006 [TBL] [Abstract][Full Text] [Related]
19. Observation of self-similarity in the magnetic fields generated by the ablative nonlinear Rayleigh-Taylor instability. Gao L; Nilson PM; Igumenschev IV; Fiksel G; Yan R; Davies JR; Martinez D; Smalyuk V; Haines MG; Blackman EG; Froula DH; Betti R; Meyerhofer DD Phys Rev Lett; 2013 May; 110(18):185003. PubMed ID: 23683208 [TBL] [Abstract][Full Text] [Related]
20. Multiple eigenmodes of the Rayleigh-Taylor instability observed for a fluid interface with smoothly varying density. III. Excitation and nonlinear evolution. Fan Z; Dong M Phys Rev E; 2020 Jun; 101(6-1):063103. PubMed ID: 32688480 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]