These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 29776052)

  • 1. Periodic sequence of stabilized wave segments in an excitable medium.
    Zykov VS; Bodenschatz E
    Phys Rev E; 2018 Mar; 97(3-1):030201. PubMed ID: 29776052
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Wave front interaction model of stabilized propagating wave segments.
    Zykov VS; Showalter K
    Phys Rev Lett; 2005 Feb; 94(6):068302. PubMed ID: 15783780
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Selection of spiral waves in excitable media with a phase wave at the wave back.
    Zykov VS; Oikawa N; Bodenschatz E
    Phys Rev Lett; 2011 Dec; 107(25):254101. PubMed ID: 22243077
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Second universal limit of wave segment propagation in excitable media.
    Kothe A; Zykov VS; Engel H
    Phys Rev Lett; 2009 Oct; 103(15):154102. PubMed ID: 19905640
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Continuous transition between two limits of spiral wave dynamics in an excitable medium.
    Zykov VS; Bodenschatz E
    Phys Rev Lett; 2014 Feb; 112(5):054101. PubMed ID: 24580596
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Density wave propagation of a wave train in a closed excitable medium.
    Suematsu NJ; Sato T; Motoike IN; Kashima K; Nakata S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Oct; 84(4 Pt 2):046203. PubMed ID: 22181241
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Unusual spiral wave dynamics in the Kessler-Levine model of an excitable medium.
    Oikawa N; Bodenschatz E; Zykov VS
    Chaos; 2015 May; 25(5):053115. PubMed ID: 26026327
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Targeting characteristic wave properties in reaction-diffusion systems by optimization of external forcing.
    Siehr J; Mommer MS; Slaby O; Lebiedz D
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Nov; 76(5 Pt 2):056211. PubMed ID: 18233743
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Termination of spiral wave breakup in a Fitzhugh-Nagumo model via short and long duration stimuli.
    Gray RA
    Chaos; 2002 Sep; 12(3):941-951. PubMed ID: 12779618
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Signal propagation and failure in one-dimensional FitzHugh-Nagumo equations with periodic stimuli.
    Yanagita T; Nishiura Y; Kobayashi R
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Mar; 71(3 Pt 2A):036226. PubMed ID: 15903565
    [TBL] [Abstract][Full Text] [Related]  

  • 11. On propagation of excitation waves in moving media: the FitzHugh-Nagumo model.
    Ermakova EA; Shnol EE; Panteleev MA; Butylin AA; Volpert V; Ataullakhanov FI
    PLoS One; 2009; 4(2):e4454. PubMed ID: 19212435
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pulse propagation and failure in the discrete FitzHugh-Nagumo model subject to high-frequency stimulation.
    Ratas I; Pyragas K
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Oct; 86(4 Pt 2):046211. PubMed ID: 23214667
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Proportional-integral control of propagating wave segments in excitable media.
    Katsumata H; Konishi K; Hara N
    Phys Rev E; 2017 Apr; 95(4-1):042216. PubMed ID: 28505760
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Wave trains in an excitable FitzHugh-Nagumo model: bistable dispersion relation and formation of isolas.
    Röder G; Bordyugov G; Engel H; Falcke M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Mar; 75(3 Pt 2):036202. PubMed ID: 17500764
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Asymptotic wave propagation in excitable media.
    Bernus O; Vigmond E
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Jul; 92(1):010901. PubMed ID: 26274110
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rotating wave solutions of the FitzHugh-Nagumo equations.
    Alford JG; Auchmuty G
    J Math Biol; 2006 Nov; 53(5):797-819. PubMed ID: 16906432
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Head-on collisions of waves in an excitable FitzHugh-Nagumo system: a transition from wave annihilation to classical wave behavior.
    Argentina M; Coullet P; Krinsky V
    J Theor Biol; 2000 Jul; 205(1):47-52. PubMed ID: 10860699
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Analyzing critical propagation in a reaction-diffusion-advection model using unstable slow waves.
    Kneer F; Obermayer K; Dahlem MA
    Eur Phys J E Soft Matter; 2015 Feb; 38(2):95. PubMed ID: 25704900
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Boundary-induced spatiotemporal complex patterns in excitable systems.
    Nekhamkina O; Sheintuch M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Jun; 73(6 Pt 2):066224. PubMed ID: 16906963
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Solitary pulses and periodic wave trains in a bistable FitzHugh-Nagumo model with cross diffusion and cross advection.
    Zemskov EP; Tsyganov MA; Ivanitsky GR; Horsthemke W
    Phys Rev E; 2022 Jan; 105(1-1):014207. PubMed ID: 35193304
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.