These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 29776061)

  • 1. Local lubrication model for spherical particles within incompressible Navier-Stokes flows.
    Lambert B; Weynans L; Bergmann M
    Phys Rev E; 2018 Mar; 97(3-1):033313. PubMed ID: 29776061
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Collision model for fully resolved simulations of flows laden with finite-size particles.
    Costa P; Boersma BJ; Westerweel J; Breugem WP
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Nov; 92(5):053012. PubMed ID: 26651784
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Numerical simulation of particulate flows using a hybrid of finite difference and boundary integral methods.
    Bhattacharya A; Kesarkar T
    Phys Rev E; 2016 Oct; 94(4-1):043309. PubMed ID: 27841548
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pressure-correlated dispersion of inertial particles in free shear flows.
    Luo K; Fan J; Cen K
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Apr; 75(4 Pt 2):046309. PubMed ID: 17500995
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Low Reynolds Number Interactions between Colloidal Particles near the Entrance to a Cylindrical Pore.
    Ramachandran V; Venkatesan R; Tryggvason G; Scott Fogler H
    J Colloid Interface Sci; 2000 Sep; 229(2):311-322. PubMed ID: 10985810
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A three-dimensional non-hydrostatic coupled model for free surface - Subsurface variable - Density flows.
    Shokri N; Namin MM; Farhoudi J
    J Contam Hydrol; 2018 Sep; 216():38-49. PubMed ID: 30126718
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Navier-Stokes simulation with constraint forces: finite-difference method for particle-laden flows and complex geometries.
    Höfler K; Schwarzer S
    Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 2000 Jun; 61(6 Pt B):7146-60. PubMed ID: 11088412
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A semi-implicit augmented IIM for Navier-Stokes equations with open, traction, or free boundary conditions.
    Li Z; Xiao L; Cai Q; Zhao H; Luo R
    J Comput Phys; 2015 Aug; 297():182-193. PubMed ID: 27087702
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mesoscale dynamic coupling of finite- and discrete-element methods for fluid-particle interactions.
    Srivastava S; Yazdchi K; Luding S
    Philos Trans A Math Phys Eng Sci; 2014 Aug; 372(2021):. PubMed ID: 24982251
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Short-time motion of Brownian particles in a shear flow.
    Iwashita T; Yamamoto R
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Mar; 79(3 Pt 1):031401. PubMed ID: 19391938
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A mesoscopic bridging scale method for fluids and coupling dissipative particle dynamics with continuum finite element method.
    Kojic M; Filipovic N; Tsuda A
    Comput Methods Appl Mech Eng; 2013 Jan; 197(6-8):821-833. PubMed ID: 23814322
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Kinetically reduced local Navier-Stokes equations: an alternative approach to hydrodynamics.
    Karlin IV; Tomboulides AG; Frouzakis CE; Ansumali S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Sep; 74(3 Pt 2):035702. PubMed ID: 17025701
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Lubrication corrections for lattice-Boltzmann simulations of particle suspensions.
    Nguyen NQ; Ladd AJ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Oct; 66(4 Pt 2):046708. PubMed ID: 12443381
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Magnetic-induced migration in a sedimenting suspension of magnetic spherical particles.
    Gontijo RG; Cunha FR
    J Nanosci Nanotechnol; 2012 Dec; 12(12):9286-94. PubMed ID: 23447990
    [TBL] [Abstract][Full Text] [Related]  

  • 15. New Finite Difference Methods Based on IIM for Inextensible Interfaces in Incompressible Flows.
    Li Z; Lai MC
    East Asian J Applied Math; 2011 Jan; 1(2):155-171. PubMed ID: 23795308
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Coupling of multiscale lattice Boltzmann discrete-element method for reactive particle fluid flows.
    Maier ML; Patel RA; Prasianakis NI; Churakov SV; Nirschl H; Krause MJ
    Phys Rev E; 2021 Mar; 103(3-1):033306. PubMed ID: 33862794
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Machine learning of lubrication correction based on GPR for the coupled DPD-DEM simulation of colloidal suspensions.
    Wang Y; Ouyang J; Wang X
    Soft Matter; 2021 Jun; 17(23):5682-5699. PubMed ID: 34008648
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Lattice Boltzmann model for incompressible axisymmetric thermal flows through porous media.
    Grissa K; Chaabane R; Lataoui Z; Benselama A; Bertin Y; Jemni A
    Phys Rev E; 2016 Oct; 94(4-1):043306. PubMed ID: 27841484
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Continuum modeling of hydrodynamic particle-particle interactions in microfluidic high-concentration suspensions.
    Ley MW; Bruus H
    Lab Chip; 2016 Apr; 16(7):1178-88. PubMed ID: 26948344
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hydrodynamic radius approximation for spherical particles suspended in a viscous fluid: influence of particle internal structure and boundary.
    Cichocki B; Ekiel-Jeżewska ML; Wajnryb E
    J Chem Phys; 2014 Apr; 140(16):164902. PubMed ID: 24784305
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.