These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

98 related articles for article (PubMed ID: 29776097)

  • 1. Modeling flow and transport in fracture networks using graphs.
    Karra S; O'Malley D; Hyman JD; Viswanathan HS; Srinivasan G
    Phys Rev E; 2018 Mar; 97(3-1):033304. PubMed ID: 29776097
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Graph-based flow modeling approach adapted to multiscale discrete-fracture-network models.
    Doolaeghe D; Davy P; Hyman JD; Darcel C
    Phys Rev E; 2020 Nov; 102(5-1):053312. PubMed ID: 33327073
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Predictions of first passage times in sparse discrete fracture networks using graph-based reductions.
    Hyman JD; Hagberg A; Srinivasan G; Mohd-Yusof J; Viswanathan H
    Phys Rev E; 2017 Jul; 96(1-1):013304. PubMed ID: 29347061
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Analysis and Visualization of Discrete Fracture Networks Using a Flow Topology Graph.
    Aldrich G; Hyman JD; Karra S; Gable CW; Makedonska N; Viswanathan H; Woodring J; Hamann B
    IEEE Trans Vis Comput Graph; 2017 Aug; 23(8):1896-1909. PubMed ID: 27333605
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterizing the impact of particle behavior at fracture intersections in three-dimensional discrete fracture networks.
    Sherman T; Hyman JD; Bolster D; Makedonska N; Srinivasan G
    Phys Rev E; 2019 Jan; 99(1-1):013110. PubMed ID: 30780262
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Method to Represent a Well in a Three-Dimensional Discrete Fracture Network Model.
    Pham H; Parashar R; Sund N; Pohlmann K
    Ground Water; 2021 Mar; 59(2):281-286. PubMed ID: 32629530
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quantifying Topological Uncertainty in Fractured Systems using Graph Theory and Machine Learning.
    Srinivasan G; Hyman JD; Osthus DA; Moore BA; O'Malley D; Karra S; Rougier E; Hagberg AA; Hunter A; Viswanathan HS
    Sci Rep; 2018 Aug; 8(1):11665. PubMed ID: 30076388
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Appropriate Domain Size for Groundwater Flow Modeling with a Discrete Fracture Network Model.
    Ji SH; Koh YK
    Ground Water; 2017 Jan; 55(1):51-62. PubMed ID: 27305316
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Assessment of uncertainty in discrete fracture network modeling using probabilistic distribution method.
    Wei Y; Dong Y; Yeh TJ; Li X; Wang L; Zha Y
    Water Sci Technol; 2017 Nov; 76(9-10):2802-2815. PubMed ID: 29168720
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Trajectory priming with dynamic fuzzy networks in nonlinear optimal control.
    Becerikli Y; Oysal Y; Konar AF
    IEEE Trans Neural Netw; 2004 Mar; 15(2):383-94. PubMed ID: 15384531
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Continuum-based DFN-consistent numerical framework for the simulation of oxygen infiltration into fractured crystalline rocks.
    Trinchero P; Puigdomenech I; Molinero J; Ebrahimi H; Gylling B; Svensson U; Bosbach D; Deissmann G
    J Contam Hydrol; 2017 May; 200():60-69. PubMed ID: 28412014
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transient flow modeling in fractured media using graphs.
    Srinivasan S; O'Malley D; Hyman JD; Karra S; Viswanathan HS; Srinivasan G
    Phys Rev E; 2020 Nov; 102(5-1):052310. PubMed ID: 33327157
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Assessment and statistical modeling of the relationship between remotely sensed aerosol optical depth and PM2.5 in the eastern United States.
    Paciorek CJ; Liu Y;
    Res Rep Health Eff Inst; 2012 May; (167):5-83; discussion 85-91. PubMed ID: 22838153
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Applied tracer tests in fractured rock: Can we predict natural gradient solute transport more accurately than fracture and matrix parameters?
    Weatherill D; Cook PG; Simmons CT; Robinson NI
    J Contam Hydrol; 2006 Dec; 88(3-4):289-305. PubMed ID: 16959371
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Simulating conservative tracers in fractured till under realistic timescales.
    Helmke MF; Simpkins WW; Horton R
    Ground Water; 2005; 43(6):877-89. PubMed ID: 16324009
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modeling and Simulation of Shale Fracture Attitude.
    Gao Q; Dong P; Liu C
    ACS Omega; 2021 Mar; 6(11):7312-7333. PubMed ID: 33778245
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Solute transport in crystalline rocks at Aspö--I: geological basis and model calibration.
    Mazurek M; Jakob A; Bossart P
    J Contam Hydrol; 2003 Mar; 61(1-4):157-74. PubMed ID: 12598102
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Randomized Trial Comparing the Pharmacokinetics, Safety, and Tolerability of DFN-02, an Intranasal Sumatriptan Spray Containing a Permeation Enhancer, With Intranasal and Subcutaneous Sumatriptan in Healthy Adults.
    Munjal S; Gautam A; Offman E; Brand-Schieber E; Allenby K; Fisher DM
    Headache; 2016 Oct; 56(9):1455-1465. PubMed ID: 27613076
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Graph sharpening plus graph integration: a synergy that improves protein functional classification.
    Shin H; Lisewski AM; Lichtarge O
    Bioinformatics; 2007 Dec; 23(23):3217-24. PubMed ID: 17977886
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A triple-continuum approach for modeling flow and transport processes in fractured rock.
    Wu YS; Liu HH; Bodvarsson GS
    J Contam Hydrol; 2004 Sep; 73(1-4):145-79. PubMed ID: 15336793
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.