These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
133 related articles for article (PubMed ID: 29776542)
1. Aggregation of cysteamine-capped gold nanoparticles in presence of ATP as an analytical tool for rapid detection of creatine kinase (CK-MM). Sharma AK; Pandey S; Nerthigan Y; Swaminathan N; Wu HF Anal Chim Acta; 2018 Sep; 1024():161-168. PubMed ID: 29776542 [TBL] [Abstract][Full Text] [Related]
2. Colorimetric determination of fumonisin B1 based on the aggregation of cysteamine-functionalized gold nanoparticles induced by a product of its hydrolysis. Chotchuang T; Cheewasedtham W; Jayeoye TJ; Rujiralai T Mikrochim Acta; 2019 Aug; 186(9):655. PubMed ID: 31463772 [TBL] [Abstract][Full Text] [Related]
3. A Rapid Colorimetric Sensor of Clenbuterol Based on Cysteamine-Modified Gold Nanoparticles. Kang J; Zhang Y; Li X; Miao L; Wu A ACS Appl Mater Interfaces; 2016 Jan; 8(1):1-5. PubMed ID: 26673452 [TBL] [Abstract][Full Text] [Related]
4. A simple and sensitive method for visual detection of heparin using positively-charged gold nanoparticles as colorimetric probes. Cao R; Li B Chem Commun (Camb); 2011 Mar; 47(10):2865-7. PubMed ID: 21246153 [TBL] [Abstract][Full Text] [Related]
5. Colorimetric sensing strategy for mercury(II) and melamine utilizing cysteamine-modified gold nanoparticles. Ma Y; Jiang L; Mei Y; Song R; Tian D; Huang H Analyst; 2013 Sep; 138(18):5338-43. PubMed ID: 23875182 [TBL] [Abstract][Full Text] [Related]
6. In situ colorimetric detection of glyphosate on plant tissues using cysteamine-modified gold nanoparticles. Tu Q; Yang T; Qu Y; Gao S; Zhang Z; Zhang Q; Wang Y; Wang J; He L Analyst; 2019 Mar; 144(6):2017-2025. PubMed ID: 30702090 [TBL] [Abstract][Full Text] [Related]
7. Optical investigations on ATP-induced aggregation of positive-charged gold nanoparticles. Li CM; Li YF; Wang J; Huang CZ Talanta; 2010 Jun; 81(4-5):1339-45. PubMed ID: 20441904 [TBL] [Abstract][Full Text] [Related]
8. Cysteamine-Modified Gold Nanoparticles as a Colorimetric Sensor for the Rapid Detection of Gentamicin. Gukowsky JC; Tan C; Han Z; He L J Food Sci; 2018 Jun; 83(6):1631-1638. PubMed ID: 29786853 [TBL] [Abstract][Full Text] [Related]
9. A simple and sensitive aptasensor for colorimetric detection of adenosine triphosphate based on unmodified gold nanoparticles. Mao Y; Fan T; Gysbers R; Tan Y; Liu F; Lin S; Jiang Y Talanta; 2017 Jun; 168():279-285. PubMed ID: 28391854 [TBL] [Abstract][Full Text] [Related]
10. Colorimetric detection of melamine in complex matrices based on cysteamine-modified gold nanoparticles. Liang X; Wei H; Cui Z; Deng J; Zhang Z; You X; Zhang XE Analyst; 2011 Jan; 136(1):179-83. PubMed ID: 20877886 [TBL] [Abstract][Full Text] [Related]
11. Highly sensitive colorimetric detection of lead using maleic acid functionalized gold nanoparticles. Ratnarathorn N; Chailapakul O; Dungchai W Talanta; 2015 Jan; 132():613-8. PubMed ID: 25476352 [TBL] [Abstract][Full Text] [Related]
12. A gold nanoparticles-based colorimetric assay for alkaline phosphatase detection with tunable dynamic range. Li CM; Zhen SJ; Wang J; Li YF; Huang CZ Biosens Bioelectron; 2013 May; 43():366-71. PubMed ID: 23356994 [TBL] [Abstract][Full Text] [Related]
13. A highly selective turn-on ATP fluorescence sensor based on unmodified cysteamine capped CdS quantum dots. Tedsana W; Tuntulani T; Ngeontae W Anal Chim Acta; 2013 Jun; 783():65-73. PubMed ID: 23726101 [TBL] [Abstract][Full Text] [Related]
14. Resonance light scattering detection of fructose bisphosphates using uranyl-salophen complex-modified gold nanoparticles as optical probe. Li S; Liao L; Wu R; Yang Y; Xu L; Xiao X; Nie C Anal Bioanal Chem; 2015 Nov; 407(29):8911-8. PubMed ID: 26403237 [TBL] [Abstract][Full Text] [Related]
16. Glassy carbon electrodes sequentially modified by cysteamine-capped gold nanoparticles and poly(amidoamine) dendrimers generation 4.5 for detecting uric acid in human serum without ascorbic acid interference. Ramírez-Segovia AS; Banda-Alemán JA; Gutiérrez-Granados S; Rodríguez A; Rodríguez FJ; Godínez LA; Bustos E; Manríquez J Anal Chim Acta; 2014 Feb; 812():18-25. PubMed ID: 24491759 [TBL] [Abstract][Full Text] [Related]
17. An unusual red-to-brown colorimetric sensing method for ultrasensitive silver(I) ion detection based on a non-aggregation of hyperbranched polyethylenimine derivative stabilized gold nanoparticles. Liu Y; Liu Y; Li Z; Liu J; Xu L; Liu X Analyst; 2015 Aug; 140(15):5335-43. PubMed ID: 26079979 [TBL] [Abstract][Full Text] [Related]
18. Ultrasensitive Pb2+ detection based on fluorescence resonance energy transfer (FRET) between quantum dots and gold nanoparticles. Wang X; Guo X Analyst; 2009 Jul; 134(7):1348-54. PubMed ID: 19562200 [TBL] [Abstract][Full Text] [Related]
19. Colorimetric detection of cephradine in pharmaceutical formulations via fluorosurfactant-capped gold nanoparticles. Lu C; Zhang N; Li J; Li Q Talanta; 2010 Apr; 81(1-2):698-702. PubMed ID: 20188984 [TBL] [Abstract][Full Text] [Related]
20. Terbium ion-coordinated carbon dots for fluorescent aptasensing of adenosine 5'-triphosphate with unmodified gold nanoparticles. Xu M; Gao Z; Zhou Q; Lin Y; Lu M; Tang D Biosens Bioelectron; 2016 Dec; 86():978-984. PubMed ID: 27498324 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]