These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

357 related articles for article (PubMed ID: 29777277)

  • 21. Effects of electromyostimulation on muscle and bone in men with acute traumatic spinal cord injury: A randomized clinical trial.
    Arija-Blázquez A; Ceruelo-Abajo S; Díaz-Merino MS; Godino-Durán JA; Martínez-Dhier L; Martin JL; Florensa-Vila J
    J Spinal Cord Med; 2014 May; 37(3):299-309. PubMed ID: 24090427
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Plasticity and function of human skeletal muscle in relation to disuse and rehabilitation: Influence of ageing and surgery.
    Suetta C
    Dan Med J; 2017 Aug; 64(8):. PubMed ID: 28869034
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Experimental Model of HindLimb Suspension-Induced Skeletal Muscle Atrophy in Rodents.
    Marzuca-Nassr GN; Vitzel KF; Murata GM; Márquez JL; Curi R
    Methods Mol Biol; 2019; 1916():167-176. PubMed ID: 30535694
    [TBL] [Abstract][Full Text] [Related]  

  • 24. NASA SPRINT exercise program efficacy for vastus lateralis and soleus skeletal muscle health during 70 days of simulated microgravity.
    Trappe TA; Minchev K; Perkins RK; Lavin KM; Jemiolo B; Ratchford SM; Claiborne A; Lee GA; Finch WH; Ryder JW; Ploutz-Snyder L; Trappe SW
    J Appl Physiol (1985); 2024 May; 136(5):1015-1039. PubMed ID: 38328821
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Calcium metabolism under stress and in repose.
    Goldsmith RS
    Life Sci Space Res; 1972; 10():87-101. PubMed ID: 12523377
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Disuse atrophy of human skeletal muscle: cell signaling and potential interventions.
    Urso ML
    Med Sci Sports Exerc; 2009 Oct; 41(10):1860-8. PubMed ID: 19727028
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Changes in multifidus and abdominal muscle size in response to microgravity: possible implications for low back pain research.
    Hides JA; Lambrecht G; Stanton WR; Damann V
    Eur Spine J; 2016 May; 25 Suppl 1():175-82. PubMed ID: 26582165
    [TBL] [Abstract][Full Text] [Related]  

  • 28. [Bone metabolism in human space flight and bed rest study].
    Ohshima H; Mukai C
    Clin Calcium; 2008 Sep; 18(9):1245-53. PubMed ID: 18758029
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Molecular biomarkers monitoring human skeletal muscle fibres and microvasculature following long-term bed rest with and without countermeasures.
    Salanova M; Schiffl G; Püttmann B; Schoser BG; Blottner D
    J Anat; 2008 Mar; 212(3):306-18. PubMed ID: 18221329
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Muscle unloading: A comparison between spaceflight and ground-based models.
    Qaisar R; Karim A; Elmoselhi AB
    Acta Physiol (Oxf); 2020 Mar; 228(3):e13431. PubMed ID: 31840423
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Signaling mechanisms involved in disuse muscle atrophy.
    Zhang P; Chen X; Fan M
    Med Hypotheses; 2007; 69(2):310-21. PubMed ID: 17376604
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Inhibition of myostatin prevents microgravity-induced loss of skeletal muscle mass and strength.
    Smith RC; Cramer MS; Mitchell PJ; Lucchesi J; Ortega AM; Livingston EW; Ballard D; Zhang L; Hanson J; Barton K; Berens S; Credille KM; Bateman TA; Ferguson VL; Ma YL; Stodieck LS
    PLoS One; 2020; 15(4):e0230818. PubMed ID: 32315311
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Short-term, daily exposure to cold temperature may be an efficient way to prevent muscle atrophy and bone loss in a microgravity environment.
    Deng C; Wang P; Zhang X; Wang Y
    Life Sci Space Res (Amst); 2015 Apr; 5():1-5. PubMed ID: 25821722
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Pharmacologic approaches to prevent skeletal muscle atrophy after spinal cord injury.
    Otzel DM; Kok HJ; Graham ZA; Barton ER; Yarrow JF
    Curr Opin Pharmacol; 2021 Oct; 60():193-199. PubMed ID: 34461564
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Skeletal muscle atrophy during short-term disuse: implications for age-related sarcopenia.
    Wall BT; Dirks ML; van Loon LJ
    Ageing Res Rev; 2013 Sep; 12(4):898-906. PubMed ID: 23948422
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Sympathetic neural influence on bone metabolism in microgravity (Review).
    Mano T; Nishimura N; Iwase S
    Acta Physiol Hung; 2010 Dec; 97(4):354-61. PubMed ID: 21138811
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Skeletal adaptations to alterations in weight-bearing activity: a comparison of models of disuse osteoporosis.
    Giangregorio L; Blimkie CJ
    Sports Med; 2002; 32(7):459-76. PubMed ID: 12015807
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The effect of rowing ergometry and resistive exercise on skeletal muscle structure and function during bed rest.
    Krainski F; Hastings JL; Heinicke K; Romain N; Pacini EL; Snell PG; Wyrick P; Palmer MD; Haller RG; Levine BD
    J Appl Physiol (1985); 2014 Jun; 116(12):1569-81. PubMed ID: 24790012
    [TBL] [Abstract][Full Text] [Related]  

  • 39. [Kidney stone formation during space flight and long-term bed rest].
    Okada A; Ichikawa J; Tozawa K
    Clin Calcium; 2011 Oct; 21(10):1505-10. PubMed ID: 21960236
    [TBL] [Abstract][Full Text] [Related]  

  • 40. [Relationship between simulated weightlessness-induced muscle spindle change and muscle atrophy].
    Zhao XH; Fan XL
    Sheng Li Xue Bao; 2013 Feb; 65(1):96-100. PubMed ID: 23426520
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 18.