These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

198 related articles for article (PubMed ID: 29777322)

  • 1. Sensitivity analysis of ultrasonic guided waves propagating in trilayered bone models: a numerical study.
    Tran TNHT; Le LH; Sacchi MD; Nguyen VH
    Biomech Model Mechanobiol; 2018 Oct; 17(5):1269-1279. PubMed ID: 29777322
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Computing dispersion curves of elastic/viscoelastic transversely-isotropic bone plates coupled with soft tissue and marrow using semi-analytical finite element (SAFE) method.
    Nguyen VH; Tran TNHT; Sacchi MD; Naili S; Le LH
    Comput Biol Med; 2017 Aug; 87():371-381. PubMed ID: 28666179
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nonlinear Inversion of Ultrasonic Dispersion Curves for Cortical Bone Thickness and Elastic Velocities.
    Tran TNHT; Sacchi MD; Ta D; Nguyen VH; Lou E; Le LH
    Ann Biomed Eng; 2019 Nov; 47(11):2178-2187. PubMed ID: 31218488
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identification of long-range ultrasonic guided wave characteristics in cortical bone by modelling.
    Guha A; Aynardi M; Shokouhi P; Lissenden CJ
    Ultrasonics; 2021 Jul; 114():106407. PubMed ID: 33667952
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Experimental and Computational Investigation of Guided Waves in a Human Skull.
    Sugino C; Ruzzene M; Erturk A
    Ultrasound Med Biol; 2021 Mar; 47(3):787-798. PubMed ID: 33358510
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Analysis of Ultrasonic Guided Wave Propagation in Multilayered Bone Structure With Varying Soft-Tissue Thickness in View of Cortical Bone Characterization.
    Tran TNHT; Le LH; Ta D
    IEEE Trans Ultrason Ferroelectr Freq Control; 2022 Jan; 69(1):147-155. PubMed ID: 34520355
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fatigue evaluation of long cortical bone using ultrasonic guided waves.
    Bai L; Xu K; Li D; Ta D; Le LH; Wang W
    J Biomech; 2018 Aug; 77():83-90. PubMed ID: 29961583
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ex Vivo Assessment of Cortical Bone Properties Using Low-Frequency Ultrasonic Guided Waves.
    Pereira D; Fernandes J; Belanger P
    IEEE Trans Ultrason Ferroelectr Freq Control; 2020 May; 67(5):910-922. PubMed ID: 31825866
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A numerical study on the propagation of Rayleigh and guided waves in cortical bone according to Mindlin's Form II gradient elastic theory.
    Papacharalampopoulos A; Vavva MG; Protopappas VC; Fotiadis DI; Polyzos D
    J Acoust Soc Am; 2011 Aug; 130(2):1060-70. PubMed ID: 21877818
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Analysis of ultrasonic waves propagating in a bone plate over a water half-space with and without overlying soft tissue.
    Tran TN; Stieglitz L; Gu YJ; Le LH
    Ultrasound Med Biol; 2013 Dec; 39(12):2422-30. PubMed ID: 24035409
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Simulation of acoustic guided wave propagation in cortical bone using a semi-analytical finite element method.
    Pereira D; Haiat G; Fernandes J; Belanger P
    J Acoust Soc Am; 2017 Apr; 141(4):2538. PubMed ID: 28464675
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Meta-Learning Analysis of Ultrasonic Guided Waves for Coated Cortical Bone Characterization.
    Gu M; Li Y; Shi Q; Tran TNHT; Song X; Li D; Ta D
    IEEE Trans Ultrason Ferroelectr Freq Control; 2022 Jun; 69(6):2010-2027. PubMed ID: 35271439
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Measurement of the dispersion and attenuation of cylindrical ultrasonic guided waves in long bone.
    Ta D; Wang W; Wang Y; Le LH; Zhou Y
    Ultrasound Med Biol; 2009 Apr; 35(4):641-52. PubMed ID: 19153000
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Velocity dispersion of guided waves propagating in a free gradient elastic plate: application to cortical bone.
    Vavva MG; Protopappas VC; Gergidis LN; Charalambopoulos A; Fotiadis DI; Polyzos D
    J Acoust Soc Am; 2009 May; 125(5):3414-27. PubMed ID: 19425680
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Three-dimensional finite element modeling of guided ultrasound wave propagation in intact and healing long bones.
    Protopappas VC; Kourtis IC; Kourtis LC; Malizos KN; Massalas CV; Fotiadis DI
    J Acoust Soc Am; 2007 Jun; 121(6):3907-21. PubMed ID: 17552737
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ultrasonic guided waves dispersion reversal for long bone thickness evaluation: a simulation study.
    Xu K; Liu C; Ta D
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():1930-3. PubMed ID: 24110091
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modeling the impact of soft tissue on axial transmission measurements of ultrasonic guided waves in human radius.
    Moilanen P; Talmant M; Kilappa V; Nicholson P; Cheng S; Timonen J; Laugier P
    J Acoust Soc Am; 2008 Oct; 124(4):2364-73. PubMed ID: 19062874
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Simulation of ultrasonic wave propagation in anisotropic poroelastic bone plate using hybrid spectral/finite element method.
    Nguyen VH; Naili S
    Int J Numer Method Biomed Eng; 2012 Aug; 28(8):861-76. PubMed ID: 25099567
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Noninvasive assessment of human jawbone using ultrasonic guided waves.
    Mahmoud A; Cortes D; Abaza A; Ammar H; Hazey M; Ngan P; Crout R; Mukdadi O
    IEEE Trans Ultrason Ferroelectr Freq Control; 2008; 55(6):1316-27. PubMed ID: 18599419
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Deep Learning Analysis of Ultrasonic Guided Waves for Cortical Bone Characterization.
    Li Y; Xu K; Li Y; Xu F; Ta D; Wang W
    IEEE Trans Ultrason Ferroelectr Freq Control; 2021 Apr; 68(4):935-951. PubMed ID: 32956055
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.