BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

359 related articles for article (PubMed ID: 29777359)

  • 1. Regulatory mechanisms of thiol-based redox sensors: lessons learned from structural studies on prokaryotic redox sensors.
    Lee SJ; Kim DG; Lee KY; Koo JS; Lee BJ
    Arch Pharm Res; 2018 Jun; 41(6):583-593. PubMed ID: 29777359
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cysteine sulfur chemistry in transcriptional regulators at the host-bacterial pathogen interface.
    Luebke JL; Giedroc DP
    Biochemistry; 2015 Jun; 54(21):3235-49. PubMed ID: 25946648
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Redox-Active Sensing by Bacterial DksA Transcription Factors Is Determined by Cysteine and Zinc Content.
    Crawford MA; Tapscott T; Fitzsimmons LF; Liu L; Reyes AM; Libby SJ; Trujillo M; Fang FC; Radi R; Vázquez-Torres A
    mBio; 2016 Apr; 7(2):e02161-15. PubMed ID: 27094335
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Redox signaling in human pathogens.
    Chen PR; Brugarolas P; He C
    Antioxid Redox Signal; 2011 Mar; 14(6):1107-18. PubMed ID: 20578795
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quantitative redox proteomics: the NOxICAT method.
    Lindemann C; Leichert LI
    Methods Mol Biol; 2012; 893():387-403. PubMed ID: 22665313
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Regulatory thiol oxidation in chloroplast metabolism, oxidative stress response and environmental signaling in plants.
    Vogelsang L; Dietz KJ
    Biochem J; 2020 May; 477(10):1865-1878. PubMed ID: 32463881
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Redox active thiol sensors of oxidative and nitrosative stress.
    Vázquez-Torres A
    Antioxid Redox Signal; 2012 Nov; 17(9):1201-14. PubMed ID: 22257022
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Thiol-based redox switches in prokaryotes.
    Hillion M; Antelmann H
    Biol Chem; 2015 May; 396(5):415-44. PubMed ID: 25720121
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Natural dietary anti-cancer chemopreventive compounds: redox-mediated differential signaling mechanisms in cytoprotection of normal cells versus cytotoxicity in tumor cells.
    Nair S; Li W; Kong AN
    Acta Pharmacol Sin; 2007 Apr; 28(4):459-72. PubMed ID: 17376285
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Antibacterial strategies inspired by the oxidative stress and response networks.
    Kim SY; Park C; Jang HJ; Kim BO; Bae HW; Chung IY; Kim ES; Cho YH
    J Microbiol; 2019 Mar; 57(3):203-212. PubMed ID: 30806977
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The redox regulation of thiol dependent signaling pathways in cancer.
    Giles GI
    Curr Pharm Des; 2006; 12(34):4427-43. PubMed ID: 17168752
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bacterial redox sensors.
    Green J; Paget MS
    Nat Rev Microbiol; 2004 Dec; 2(12):954-66. PubMed ID: 15550941
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The thioredoxin/peroxiredoxin/sulfiredoxin system: current overview on its redox function in plants and regulation by reactive oxygen and nitrogen species.
    Sevilla F; Camejo D; Ortiz-Espín A; Calderón A; Lázaro JJ; Jiménez A
    J Exp Bot; 2015 May; 66(10):2945-55. PubMed ID: 25873657
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The physiological role of thiol-based redox sensors in plant defense signaling.
    Chae HB; Bae SB; Paeng SK; Wi SD; Phan KAT; Kim MG; Kim WY; Yun DJ; Lee SY
    New Phytol; 2023 Aug; 239(4):1203-1211. PubMed ID: 37322620
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Zinc center as redox switch--new function for an old motif.
    Ilbert M; Graf PC; Jakob U
    Antioxid Redox Signal; 2006; 8(5-6):835-46. PubMed ID: 16771674
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Two distinct mechanisms of transcriptional regulation by the redox sensor YodB.
    Lee SJ; Lee IG; Lee KY; Kim DG; Eun HJ; Yoon HJ; Chae S; Song SH; Kang SO; Seo MD; Kim HS; Park SJ; Lee BJ
    Proc Natl Acad Sci U S A; 2016 Aug; 113(35):E5202-11. PubMed ID: 27531959
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Oxidative stress detection: what for? Part II.
    Palmieri B; Sblendorio V
    Eur Rev Med Pharmacol Sci; 2007; 11(1):27-54. PubMed ID: 17405347
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enzymatic control of cysteinyl thiol switches in proteins.
    Deponte M; Lillig CH
    Biol Chem; 2015 May; 396(5):401-13. PubMed ID: 25581754
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Glyco-redox, a link between oxidative stress and changes of glycans: Lessons from research on glutathione, reactive oxygen and nitrogen species to glycobiology.
    Taniguchi N; Kizuka Y; Takamatsu S; Miyoshi E; Gao C; Suzuki K; Kitazume S; Ohtsubo K
    Arch Biochem Biophys; 2016 Apr; 595():72-80. PubMed ID: 27095220
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Role of Redox in Signal Transduction.
    Hancock JT
    Methods Mol Biol; 2019; 1990():1-11. PubMed ID: 31148058
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.