BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 29777385)

  • 1. Changes in selection intensity on the mitogenome of subterranean and fossorial rodents respective to aboveground species.
    Tavares WC; Seuánez HN
    Mamm Genome; 2018 Jun; 29(5-6):353-363. PubMed ID: 29777385
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The evolution of mitochondrial genomes in subterranean caviomorph rodents: adaptation against a background of purifying selection.
    Tomasco IH; Lessa EP
    Mol Phylogenet Evol; 2011 Oct; 61(1):64-70. PubMed ID: 21723951
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Adaptive evolution of β-globin gene in subterranean in South America octodontid rodents.
    Pejo M; Tomasco IH
    Gene; 2021 Mar; 772():145352. PubMed ID: 33359035
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Genetic diversity and its ecological correlates in nature: comparisons between subterranean, fossorial, and aboveground small mammals.
    Nevo E; Filippucci MG; Beiles A
    Prog Clin Biol Res; 1990; 335():347-66. PubMed ID: 2309012
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molecular adaptive convergence in the α-globin gene in subterranean octodontid rodents.
    Tomasco IH; Boullosa N; Hoffmann FG; Lessa EP
    Gene; 2017 Sep; 628():275-280. PubMed ID: 28735726
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Two mitochondrial genes under episodic positive selection in subterranean octodontoid rodents.
    Tomasco IH; Lessa EP
    Gene; 2014 Jan; 534(2):371-8. PubMed ID: 24113079
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparative respiratory strategies of subterranean and fossorial octodontid rodents to cope with hypoxic and hypercapnic atmospheres.
    Tomasco IH; Del Río R; Iturriaga R; Bozinovic F
    J Comp Physiol B; 2010 Aug; 180(6):877-84. PubMed ID: 20352232
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evolution of the CLOCK and BMAL1 genes in a subterranean rodent species (Lasiopodomys mandarinus).
    Sun H; Zhang Y; Shi Y; Li Y; Li W; Wang Z
    Int J Biol Macromol; 2018 Apr; 109():932-940. PubMed ID: 29141193
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Incipient morphological specializations associated with fossorial life in the skull of ground squirrels (Sciuridae, Rodentia).
    Gomes Rodrigues H; Damette M
    J Morphol; 2023 Jan; 284(1):e21540. PubMed ID: 36533735
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evolution of circadian genes PER and CRY in subterranean rodents.
    Sun H; Dong Q; Wang C; Jiang M; Wang B; Wang Z
    Int J Biol Macromol; 2018 Oct; 118(Pt B):1400-1405. PubMed ID: 29959015
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ethiopian highlands as a cradle of the African fossorial root-rats (genus Tachyoryctes), the genetic evidence.
    Šumbera R; Krásová J; Lavrenchenko LA; Mengistu S; Bekele A; Mikula O; Bryja J
    Mol Phylogenet Evol; 2018 Sep; 126():105-115. PubMed ID: 29626665
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phylogenomic analyses reveal a molecular signature linked to subterranean adaptation in rodents.
    Du K; Yang L; He S
    BMC Evol Biol; 2015 Dec; 15():287. PubMed ID: 26683336
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Signatures of Adaptation in Mitochondrial Genomes of Palearctic Subterranean Voles (Arvicolinae, Rodentia).
    Bondareva O; Genelt-Yanovskiy E; Petrova T; Bodrov S; Smorkatcheva A; Abramson N
    Genes (Basel); 2021 Dec; 12(12):. PubMed ID: 34946894
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Diversification and biogeography of the Neotropical caviomorph lineage Octodontoidea (Rodentia: Hystricognathi).
    Upham NS; Patterson BD
    Mol Phylogenet Evol; 2012 May; 63(2):417-29. PubMed ID: 22327013
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Convergent reduction of V1R genes in subterranean rodents.
    Jiao H; Hong W; Nevo E; Li K; Zhao H
    BMC Evol Biol; 2019 Aug; 19(1):176. PubMed ID: 31470793
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Selection on MHC in a Context of Historical Demographic Change in 2 Closely Distributed Species of Tuco-tucos (Ctenomys australis and C. talarum).
    Cutrera AP; Mora MS
    J Hered; 2017 Sep; 108(6):628-639. PubMed ID: 28605534
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Diversity of tuco-tucos (Ctenomys, Rodentia) in the Northeastern wetlands from Argentina: mitochondrial phylogeny and chromosomal evolution.
    Caraballo DA; Abruzzese GA; Rossi MS
    Genetica; 2012 Jun; 140(4-6):125-36. PubMed ID: 22810419
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Phylogeny, Ecology, and Gene Families Covariation Shaped the Olfactory Subgenome of Rodents.
    Courcelle M; Fabre PH; Douzery EJP
    Genome Biol Evol; 2023 Nov; 15(11):. PubMed ID: 37972291
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Searching for signatures of positive selection in cytochrome b gene associated with subterranean lifestyle in fast-evolving arvicolines (Arvicolinae, Cricetidae, Rodentia).
    Bondareva OV; Potapova NA; Konovalov KA; Petrova TV; Abramson NI
    BMC Ecol Evol; 2021 May; 21(1):92. PubMed ID: 34016058
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fossorial adaptations in African mole-rats (Bathyergidae) and the unique appendicular phenotype of naked mole-rats.
    Montoya-Sanhueza G; Šaffa G; Šumbera R; Chinsamy A; Jarvis JUM; Bennett NC
    Commun Biol; 2022 Jun; 5(1):526. PubMed ID: 35650336
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.