BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

83 related articles for article (PubMed ID: 29777401)

  • 1. Bantam regulates the axonal geometry of Drosophila larval brain by modulating actin regulator enabled.
    Banerjee A; Roy JK
    Invert Neurosci; 2018 May; 18(2):7. PubMed ID: 29777401
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dicer-1 regulates proliferative potential of Drosophila larval neural stem cells through bantam miRNA based down-regulation of the G1/S inhibitor Dacapo.
    Banerjee A; Roy JK
    Dev Biol; 2017 Mar; 423(1):57-65. PubMed ID: 28109717
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Abi plays an opposing role to Abl in Drosophila axonogenesis and synaptogenesis.
    Lin TY; Huang CH; Kao HH; Liou GG; Yeh SR; Cheng CM; Chen MH; Pan RL; Juang JL
    Development; 2009 Sep; 136(18):3099-107. PubMed ID: 19675132
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cdk5 regulates the size of an axon initial segment-like compartment in mushroom body neurons of the Drosophila central brain.
    Trunova S; Baek B; Giniger E
    J Neurosci; 2011 Jul; 31(29):10451-62. PubMed ID: 21775591
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Drosophila Dunc-115 mediates axon projection through actin binding.
    Roblodowski C; He Q
    Invert Neurosci; 2017 Mar; 17(1):2. PubMed ID: 28124181
    [TBL] [Abstract][Full Text] [Related]  

  • 6. miR-124 controls Drosophila behavior and is required for neural development.
    Wang C; Feng T; Wan Q; Kong Y; Yuan L
    Int J Dev Neurosci; 2014 Nov; 38():105-12. PubMed ID: 25169673
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structure and development of the subesophageal zone of the Drosophila brain. I. Segmental architecture, compartmentalization, and lineage anatomy.
    Hartenstein V; Omoto JJ; Ngo KT; Wong D; Kuert PA; Reichert H; Lovick JK; Younossi-Hartenstein A
    J Comp Neurol; 2018 Jan; 526(1):6-32. PubMed ID: 28730682
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Study of bantam miRNA expression in brain tumour resulted due to loss of polarity modules in Drosophila melanogaster.
    Banerjee A; Roy JK
    J Genet; 2017 Jun; 96(2):365-369. PubMed ID: 28674237
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Notch-mediated repression of bantam miRNA contributes to boundary formation in the Drosophila wing.
    Becam I; Rafel N; Hong X; Cohen SM; Milán M
    Development; 2011 Sep; 138(17):3781-9. PubMed ID: 21795284
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Control of Drosophila Type I and Type II central brain neuroblast proliferation by bantam microRNA.
    Weng R; Cohen SM
    Development; 2015 Nov; 142(21):3713-20. PubMed ID: 26395494
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mob as tumor suppressor is regulated by bantam microRNA through a feedback loop for tissue growth control.
    Zhang Y; Lai ZC
    Biochem Biophys Res Commun; 2013 Oct; 439(4):438-42. PubMed ID: 24016667
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanism of Axonal Contractility in Embryonic Drosophila Motor Neurons In Vivo.
    Tofangchi A; Fan A; Saif MTA
    Biophys J; 2016 Oct; 111(7):1519-1527. PubMed ID: 27705774
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Molecular and cellular organization of the taste system in the Drosophila larva.
    Kwon JY; Dahanukar A; Weiss LA; Carlson JR
    J Neurosci; 2011 Oct; 31(43):15300-9. PubMed ID: 22031876
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The Formin DAAM Functions as Molecular Effector of the Planar Cell Polarity Pathway during Axonal Development in Drosophila.
    Gombos R; Migh E; Antal O; Mukherjee A; Jenny A; Mihály J
    J Neurosci; 2015 Jul; 35(28):10154-67. PubMed ID: 26180192
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Actin-dependent astrocytic infiltration is a key step for axon defasciculation during remodeling.
    Marmor-Kollet N; Berkun V; Cummings G; Keren-Shaul H; David E; Addadi Y; Schuldiner O
    Cell Rep; 2023 Feb; 42(2):112117. PubMed ID: 36790930
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structure and development of the subesophageal zone of the Drosophila brain. II. Sensory compartments.
    Kendroud S; Bohra AA; Kuert PA; Nguyen B; Guillermin O; Sprecher SG; Reichert H; VijayRaghavan K; Hartenstein V
    J Comp Neurol; 2018 Jan; 526(1):33-58. PubMed ID: 28875566
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular Dissection of DAAM Function during Axon Growth in Drosophila Embryonic Neurons.
    Földi I; Tóth K; Gombos R; Gaszler P; Görög P; Zygouras I; Bugyi B; Mihály J
    Cells; 2022 Apr; 11(9):. PubMed ID: 35563792
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Epithelial microRNA-9a regulates dendrite growth through Fmi-Gq signaling in Drosophila sensory neurons.
    Wang Y; Wang H; Li X; Li Y
    Dev Neurobiol; 2016 Feb; 76(2):225-37. PubMed ID: 26016469
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Drosophila growth cones: a genetically tractable platform for the analysis of axonal growth dynamics.
    Sánchez-Soriano N; Gonçalves-Pimentel C; Beaven R; Haessler U; Ofner-Ziegenfuss L; Ballestrem C; Prokop A
    Dev Neurobiol; 2010 Jan; 70(1):58-71. PubMed ID: 19937774
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The microRNA bantam functions in epithelial cells to regulate scaling growth of dendrite arbors in drosophila sensory neurons.
    Parrish JZ; Xu P; Kim CC; Jan LY; Jan YN
    Neuron; 2009 Sep; 63(6):788-802. PubMed ID: 19778508
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.