These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 29777477)

  • 21. Age-related cognitive task effects on gait characteristics: do different working memory components make a difference?
    Qu X
    J Neuroeng Rehabil; 2014 Oct; 11():149. PubMed ID: 25348927
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Comparable Stride Time Fractal Dynamics and Gait Adaptability in Active Young and Older Adults Under Normal and Asymmetric Walking.
    Ducharme SW; Kent JA; van Emmerik REA
    Front Physiol; 2019; 10():1318. PubMed ID: 31708794
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Effects of walking-induced fatigue on gait function and tripping risks in older adults.
    Nagano H; James L; Sparrow WA; Begg RK
    J Neuroeng Rehabil; 2014 Nov; 11():155. PubMed ID: 25399324
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Walking on a Vertically Oscillating Treadmill: Phase Synchronization and Gait Kinematics.
    Nessler JA; Heredia S; BĂ©lair J; Milton J
    PLoS One; 2017; 12(1):e0169924. PubMed ID: 28099517
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The interacting effect of cognitive and motor task demands on performance of gait, balance and cognition in young adults.
    Szturm T; Maharjan P; Marotta JJ; Shay B; Shrestha S; Sakhalkar V
    Gait Posture; 2013 Sep; 38(4):596-602. PubMed ID: 23477841
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Attuning one's steps to visual targets reduces comfortable walking speed in both young and older adults.
    Peper CL; de Dreu MJ; Roerdink M
    Gait Posture; 2015 Mar; 41(3):830-4. PubMed ID: 25800002
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Biofeedback training effects on minimum toe clearance variability during treadmill walking.
    Tirosh O; Cambell A; Begg RK; Sparrow WA
    Ann Biomed Eng; 2013 Aug; 41(8):1661-9. PubMed ID: 23064822
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Cardiac, respiratory, and locomotor coordination during walking in humans.
    Niizeki K; Kawahara K; Miyamoto Y
    Folia Primatol (Basel); 1996; 66(1-4):226-39. PubMed ID: 8953762
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Hemiparetic stepping to the beat: asymmetric response to metronome phase shift during treadmill gait.
    Pelton TA; Johannsen L; Huiya Chen ; Wing AM
    Neurorehabil Neural Repair; 2010 Jun; 24(5):428-34. PubMed ID: 19952366
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Gait variability in healthy old adults is more affected by a visual perturbation than by a cognitive or narrow step placement demand.
    Francis CA; Franz JR; O'Connor SM; Thelen DG
    Gait Posture; 2015 Sep; 42(3):380-5. PubMed ID: 26233581
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The impact of speed and time on gait dynamics.
    Thomas KS; Russell DM; Van Lunen BL; Colberg SR; Morrison S
    Hum Mov Sci; 2017 Aug; 54():320-330. PubMed ID: 28641172
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Side by side treadmill walking with intentionally desynchronized gait.
    Nessler JA; McMillan D; Schoulten M; Shallow T; Stewart B; De Leone C
    Ann Biomed Eng; 2013 Aug; 41(8):1680-91. PubMed ID: 23001358
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Effect of treadmill walking on the stride interval dynamics of human gait.
    Chang MD; Shaikh S; Chau T
    Gait Posture; 2009 Nov; 30(4):431-5. PubMed ID: 19656682
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Complexity, fractal dynamics and determinism in treadmill ambulation: Implications for clinical biomechanists.
    Hollman JH; Watkins MK; Imhoff AC; Braun CE; Akervik KA; Ness DK
    Clin Biomech (Bristol, Avon); 2016 Aug; 37():91-97. PubMed ID: 27380204
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Entrainment to a real time fractal visual stimulus modulates fractal gait dynamics.
    Rhea CK; Kiefer AW; D'Andrea SE; Warren WH; Aaron RK
    Hum Mov Sci; 2014 Aug; 36():20-34. PubMed ID: 24911782
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Separating the effects of age and walking speed on gait variability.
    Kang HG; Dingwell JB
    Gait Posture; 2008 May; 27(4):572-7. PubMed ID: 17768055
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A comparison of variability in spatiotemporal gait parameters between treadmill and overground walking conditions.
    Hollman JH; Watkins MK; Imhoff AC; Braun CE; Akervik KA; Ness DK
    Gait Posture; 2016 Jan; 43():204-9. PubMed ID: 26481257
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Effect of age on the variability and stability of gait: a cross-sectional treadmill study in healthy individuals between 20 and 69 years of age.
    Terrier P; Reynard F
    Gait Posture; 2015 Jan; 41(1):170-4. PubMed ID: 25455699
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Effects of cognitive workload on heart and locomotor rhythms coupling.
    De Bartolo D; De Giorgi C; Compagnucci L; Betti V; Antonucci G; Morone G; Paolucci S; Iosa M
    Neurosci Lett; 2021 Sep; 762():136140. PubMed ID: 34324958
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Leveraging a virtual alley with continuously varying width modulates step width variability during self-paced treadmill walking.
    Mangalam M; Skiadopoulos A; Siu KC; Mukherjee M; Likens A; Stergiou N
    Neurosci Lett; 2023 Jan; 793():136966. PubMed ID: 36379391
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.