These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 29777505)

  • 1. A fingertip force prediction model for grasp patterns characterised from the chaotic behaviour of EEG.
    Roy R; Sikdar D; Mahadevappa M; Kumar CS
    Med Biol Eng Comput; 2018 Nov; 56(11):2095-2107. PubMed ID: 29777505
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chaotic behaviour of EEG responses with an identical grasp posture.
    Roy R; Sikdar D; Mahadevappa M
    Comput Biol Med; 2020 Aug; 123():103822. PubMed ID: 32658779
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Visual and tactile information about object-curvature control fingertip forces and grasp kinematics in human dexterous manipulation.
    Jenmalm P; Dahlstedt S; Johansson RS
    J Neurophysiol; 2000 Dec; 84(6):2984-97. PubMed ID: 11110826
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A hybrid BCI based on EEG and fNIRS signals improves the performance of decoding motor imagery of both force and speed of hand clenching.
    Yin X; Xu B; Jiang C; Fu Y; Wang Z; Li H; Shi G
    J Neural Eng; 2015 Jun; 12(3):036004. PubMed ID: 25834118
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Initiation and development of fingertip forces during whole-hand grasping.
    Reilmann R; Gordon AM; Henningsen H
    Exp Brain Res; 2001 Oct; 140(4):443-52. PubMed ID: 11685397
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Classification of Hand Grasp Kinetics and Types Using Movement-Related Cortical Potentials and EEG Rhythms.
    Jochumsen M; Rovsing C; Rovsing H; Niazi IK; Dremstrup K; Kamavuako EN
    Comput Intell Neurosci; 2017; 2017():7470864. PubMed ID: 28951736
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Human EEG reveals distinct neural correlates of power and precision grasping types.
    Iturrate I; Chavarriaga R; Pereira M; Zhang H; Corbet T; Leeb R; Millán JDR
    Neuroimage; 2018 Nov; 181():635-644. PubMed ID: 30056196
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multidigit force control during unconstrained grasping in response to object perturbations.
    Naceri A; Moscatelli A; Haschke R; Ritter H; Santello M; Ernst MO
    J Neurophysiol; 2017 May; 117(5):2025-2036. PubMed ID: 28228582
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Prediction of anatomically and biomechanically feasible precision grip posture of the human hand based on minimization of muscle effort.
    Nakajima T; Asami Y; Endo Y; Tada M; Ogihara N
    Sci Rep; 2022 Aug; 12(1):13247. PubMed ID: 35918451
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Impaired anticipatory control of fingertip forces in patients with a pure motor or sensorimotor lacunar syndrome.
    Raghavan P; Krakauer JW; Gordon AM
    Brain; 2006 Jun; 129(Pt 6):1415-25. PubMed ID: 16597653
    [TBL] [Abstract][Full Text] [Related]  

  • 11. EEG oscillatory patterns and classification of sequential compound limb motor imagery.
    Yi W; Qiu S; Wang K; Qi H; He F; Zhou P; Zhang L; Ming D
    J Neuroeng Rehabil; 2016 Jan; 13():11. PubMed ID: 26822435
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Glove-Net: Enhancing Grasp Classification with Multisensory Data and Deep Learning Approach.
    Pratap S; Narayan J; Hatta Y; Ito K; Hazarika SM
    Sensors (Basel); 2024 Jul; 24(13):. PubMed ID: 39001157
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Earlier and greater hand pre-shaping in the elderly: a study based on kinematic analysis of reaching movements to grasp objects.
    Tamaru Y; Naito Y; Nishikawa T
    Psychogeriatrics; 2017 Nov; 17(6):382-388. PubMed ID: 28295921
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Improvement of grasping after motor imagery in C6-C7 tetraplegia: A kinematic and MEG pilot study.
    Mateo S; Di Rienzo F; Reilly KT; Revol P; Delpuech C; Daligault S; Guillot A; Jacquin-Courtois S; Luauté J; Rossetti Y; Collet C; Rode G
    Restor Neurol Neurosci; 2015; 33(4):543-55. PubMed ID: 26409412
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Force feedback requirements for efficient laparoscopic grasp control.
    Westebring-van der Putten EP; van den Dobbelsteen JJ; Goossens RH; Jakimowicz JJ; Dankelman J
    Ergonomics; 2009 Sep; 52(9):1055-66. PubMed ID: 19662556
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Is the Control of Applied Digital Forces During Natural Five-digit Grasping Affected by Carpal Tunnel Syndrome?
    Chen PT; Jou IM; Lin CJ; Chieh HF; Kuo LC; Su FC
    Clin Orthop Relat Res; 2015 Jul; 473(7):2371-82. PubMed ID: 25690168
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Regression-based reconstruction of human grip force trajectories with noninvasive scalp electroencephalography.
    Paek AY; Gailey A; Parikh PJ; Santello M; Contreras-Vidal JL
    J Neural Eng; 2019 Nov; 16(6):066030. PubMed ID: 31476751
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multisession, noninvasive closed-loop neuroprosthetic control of grasping by upper limb amputees.
    Agashe HA; Paek AY; Contreras-Vidal JL
    Prog Brain Res; 2016; 228():107-28. PubMed ID: 27590967
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Precision grasps of children and young and old adults: individual differences in digit contact strategy, purchase pattern, and digit posture.
    Wong YJ; Whishaw IQ
    Behav Brain Res; 2004 Sep; 154(1):113-23. PubMed ID: 15302117
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Precision Control of Fingertip Force by a Biorealistic Hand with a Pair of Neuromorphic Muscles
    Xie A; Chou CH; Zhang Z; Li C; Lan N
    Annu Int Conf IEEE Eng Med Biol Soc; 2023 Jul; 2023():1-4. PubMed ID: 38082645
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.