These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

231 related articles for article (PubMed ID: 29777590)

  • 1. Boosting mediated electron transfer in bioelectrochemical systems with tailored defined microbial cocultures.
    Schmitz S; Rosenbaum MA
    Biotechnol Bioeng; 2018 Sep; 115(9):2183-2193. PubMed ID: 29777590
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Strain- and Substrate-Dependent Redox Mediator and Electricity Production by Pseudomonas aeruginosa.
    Bosire EM; Blank LM; Rosenbaum MA
    Appl Environ Microbiol; 2016 Aug; 82(16):5026-38. PubMed ID: 27287325
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development of Enterobacter aerogenes fuel cells: from in situ biohydrogen oxidization to direct electroactive biofilm.
    Zhuang L; Zhou S; Yuan Y; Liu T; Wu Z; Cheng J
    Bioresour Technol; 2011 Jan; 102(1):284-9. PubMed ID: 20598528
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Isolation and characterization of electrochemical active bacterial Pseudomonas aeruginosa strain RE7].
    Luo HP; Liu GL; Zhang RD; Cao LX
    Huan Jing Ke Xue; 2009 Jul; 30(7):2118-23. PubMed ID: 19775018
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nitrate removal from groundwater driven by electricity generation and heterotrophic denitrification in a bioelectrochemical system.
    Tong Y; He Z
    J Hazard Mater; 2013 Nov; 262():614-9. PubMed ID: 24096001
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biofilm promoted current generation of Pseudomonas aeruginosa microbial fuel cell via improving the interfacial redox reaction of phenazines.
    Qiao YJ; Qiao Y; Zou L; Wu XS; Liu JH
    Bioelectrochemistry; 2017 Oct; 117():34-39. PubMed ID: 28575838
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Anaerobes in Bioelectrochemical Systems.
    Kokko ME; Mäkinen AE; Puhakka JA
    Adv Biochem Eng Biotechnol; 2016; 156():263-292. PubMed ID: 26907547
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Oxygen allows Shewanella oneidensis MR-1 to overcome mediator washout in a continuously fed bioelectrochemical system.
    TerAvest MA; Rosenbaum MA; Kotloski NJ; Gralnick JA; Angenent LT
    Biotechnol Bioeng; 2014 Apr; 111(4):692-9. PubMed ID: 24122485
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Life cycle assessment of bioelectrochemical and integrated microbial fuel cell systems for sustainable wastewater treatment and resource recovery.
    Chin MY; Phuang ZX; Woon KS; Hanafiah MM; Zhang Z; Liu X
    J Environ Manage; 2022 Oct; 320():115778. PubMed ID: 35952559
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Shewanella oneidensis in a lactate-fed pure-culture and a glucose-fed co-culture with Lactococcus lactis with an electrode as electron acceptor.
    Rosenbaum MA; Bar HY; Beg QK; Segrè D; Booth J; Cotta MA; Angenent LT
    Bioresour Technol; 2011 Feb; 102(3):2623-8. PubMed ID: 21036604
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bioelectrochemical behaviour of a sequentially added biocatalytic coculture in a microbial fuel cell.
    Arkatkar A; Mungray AK; Sharma P
    J Basic Microbiol; 2020 Jul; 60(7):562-573. PubMed ID: 32311138
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of wastewater constituents and operational conditions on the composition and dynamics of anodic microbial communities in bioelectrochemical systems.
    Kokko M; Epple S; Gescher J; Kerzenmacher S
    Bioresour Technol; 2018 Jun; 258():376-389. PubMed ID: 29548640
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A 96-well high-throughput, rapid-screening platform of extracellular electron transfer in microbial fuel cells.
    Tahernia M; Mohammadifar M; Gao Y; Panmanee W; Hassett DJ; Choi S
    Biosens Bioelectron; 2020 Aug; 162():112259. PubMed ID: 32452395
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reactive oxygen species (ROS) generated by cyanobacteria act as an electron acceptor in the biocathode of a bio-electrochemical system.
    Cai PJ; Xiao X; He YR; Li WW; Zang GL; Sheng GP; Lam MH; Yu L; Yu HQ
    Biosens Bioelectron; 2013 Jan; 39(1):306-10. PubMed ID: 22819632
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enhanced bioelectricity generation by improving pyocyanin production and membrane permeability through sophorolipid addition in Pseudomonas aeruginosa-inoculated microbial fuel cells.
    Shen HB; Yong XY; Chen YL; Liao ZH; Si RW; Zhou J; Wang SY; Yong YC; OuYang PK; Zheng T
    Bioresour Technol; 2014 Sep; 167():490-4. PubMed ID: 25011080
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electrobiochemical skills of Pseudomonas aeruginosa species that produce pyocyanin or pyoverdine for glycerol oxidation in a microbial fuel cell.
    Zani ACB; Almeida ÉJR; Furlan JPR; Pedrino M; Guazzaroni ME; Stehling EG; Andrade AR; Reginatto V
    Chemosphere; 2023 Sep; 335():139073. PubMed ID: 37263512
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A review of recent advances in electrode materials for emerging bioelectrochemical systems: From biofilm-bearing anodes to specialized cathodes.
    Mier AA; Olvera-Vargas H; Mejía-López M; Longoria A; Verea L; Sebastian PJ; Arias DM
    Chemosphere; 2021 Nov; 283():131138. PubMed ID: 34146871
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Engineering PQS biosynthesis pathway for enhancement of bioelectricity production in pseudomonas aeruginosa microbial fuel cells.
    Wang VB; Chua SL; Cao B; Seviour T; Nesatyy VJ; Marsili E; Kjelleberg S; Givskov M; Tolker-Nielsen T; Song H; Loo JS; Yang L
    PLoS One; 2013; 8(5):e63129. PubMed ID: 23700414
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High current densities enable exoelectrogens to outcompete aerobic heterotrophs for substrate.
    Ren L; Zhang X; He W; Logan BE
    Biotechnol Bioeng; 2014 Nov; 111(11):2163-9. PubMed ID: 24889278
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enhancement of bioelectricity generation by manipulation of the electron shuttles synthesis pathway in microbial fuel cells.
    Yong XY; Shi DY; Chen YL; Feng J; Xu L; Zhou J; Wang SY; Yong YC; Sun YM; OuYang PK; Zheng T
    Bioresour Technol; 2014; 152():220-4. PubMed ID: 24292201
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.