These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
128 related articles for article (PubMed ID: 29777666)
21. Mechanism of insect resistance to the microbial insecticide Bacillus thuringiensis. Van Rie J; McGaughey WH; Johnson DE; Barnett BD; Van Mellaert H Science; 1990 Jan; 247(4938):72-4. PubMed ID: 2294593 [TBL] [Abstract][Full Text] [Related]
22. Current Insights on Vegetative Insecticidal Proteins (Vip) as Next Generation Pest Killers. Syed T; Askari M; Meng Z; Li Y; Abid MA; Wei Y; Guo S; Liang C; Zhang R Toxins (Basel); 2020 Aug; 12(8):. PubMed ID: 32823872 [No Abstract] [Full Text] [Related]
23. A deletion mutant ndv200 of the Bacillus thuringiensis vip3BR insecticidal toxin gene is a prospective candidate for the next generation of genetically modified crop plants resistant to lepidopteran insect damage. Gayen S; Samanta MK; Hossain MA; Mandal CC; Sen SK Planta; 2015 Jul; 242(1):269-81. PubMed ID: 25912191 [TBL] [Abstract][Full Text] [Related]
24. Development and mechanisms of resistance to Bacillus thuringiensis endotoxin Cry1Ac in the American bollworm, Helicoverpa armigera (Hübner). Chandrashekar K; Gujar GT Indian J Exp Biol; 2004 Feb; 42(2):164-73. PubMed ID: 15282949 [TBL] [Abstract][Full Text] [Related]
25. Insecticidal activity, putative binding proteins and histopathological effects of Bacillus thuringiensis Vip3(459) toxin on the lepidopteran pest Ectomyelois ceratoniae. Boukedi H; Tounsi S; Abdelkefi-Mesrati L Acta Trop; 2018 Jun; 182():60-63. PubMed ID: 29448008 [TBL] [Abstract][Full Text] [Related]
26. Insect Resistance to Bacillus thuringiensis Toxin Cry2Ab Is Conferred by Mutations in an ABC Transporter Subfamily A Protein. Tay WT; Mahon RJ; Heckel DG; Walsh TK; Downes S; James WJ; Lee SF; Reineke A; Williams AK; Gordon KH PLoS Genet; 2015 Nov; 11(11):e1005534. PubMed ID: 26583651 [TBL] [Abstract][Full Text] [Related]
27. Changes in gene expression and apoptotic response in Spodoptera exigua larvae exposed to sublethal concentrations of Vip3 insecticidal proteins. Hernández-Martínez P; Gomis-Cebolla J; Ferré J; Escriche B Sci Rep; 2017 Nov; 7(1):16245. PubMed ID: 29176692 [TBL] [Abstract][Full Text] [Related]
28. Variation in susceptibility of Helicoverpa armigera (Hübner) and Helicoverpa punctigera (Wallengren) (Lepidoptera: Noctuidae) in Australia to two Bacillus thuringiensis toxins. Bird LJ; Akhurst RJ J Invertebr Pathol; 2007 Feb; 94(2):84-94. PubMed ID: 17049552 [TBL] [Abstract][Full Text] [Related]
29. Insecticidal Activity and Histopathological Effects of Vip3Aa Protein from Song F; Lin Y; Chen C; Shao E; Guan X; Huang Z J Microbiol Biotechnol; 2016 Oct; 26(10):1774-1780. PubMed ID: 27435544 [TBL] [Abstract][Full Text] [Related]
30. Cross-resistance to toxins used in pyramided Bt crops and resistance to Bt sprays in Helicoverpa zea. Welch KL; Unnithan GC; Degain BA; Wei J; Zhang J; Li X; Tabashnik BE; Carrière Y J Invertebr Pathol; 2015 Nov; 132():149-156. PubMed ID: 26458274 [TBL] [Abstract][Full Text] [Related]
31. Specific binding of activated Vip3Aa10 to Helicoverpa armigera brush border membrane vesicles results in pore formation. Liu JG; Yang AZ; Shen XH; Hua BG; Shi GL J Invertebr Pathol; 2011 Oct; 108(2):92-7. PubMed ID: 21824478 [TBL] [Abstract][Full Text] [Related]
32. Resistance of Helicoverpa armigera to Cry1Ac toxin from Bacillus thuringiensis is due to improper processing of the protoxin. Rajagopal R; Arora N; Sivakumar S; Rao NG; Nimbalkar SA; Bhatnagar RK Biochem J; 2009 Apr; 419(2):309-16. PubMed ID: 19146482 [TBL] [Abstract][Full Text] [Related]
33. Susceptibility of dipel-resistant and -susceptible Ostrinia nubilalis (Lepidoptera: Crambidae) to individual Bacillus thuringiensis protoxins. Li H; Oppert B; Higgins RA; Huang F; Buschman LL; Zhu KY J Econ Entomol; 2005 Aug; 98(4):1333-40. PubMed ID: 16156588 [TBL] [Abstract][Full Text] [Related]
34. Mechanism of resistance to Bacillus thuringiensis toxin Cry1Ac in a greenhouse population of the cabbage looper, Trichoplusia ni. Wang P; Zhao JZ; Rodrigo-Simón A; Kain W; Janmaat AF; Shelton AM; Ferré J; Myers J Appl Environ Microbiol; 2007 Feb; 73(4):1199-207. PubMed ID: 17189446 [TBL] [Abstract][Full Text] [Related]
35. Spodoptera frugiperda (J.E. Smith) with field-evolved resistance to Bt maize are susceptible to Bt pesticides. Jakka SR; Knight VR; Jurat-Fuentes JL J Invertebr Pathol; 2014 Oct; 122():52-4. PubMed ID: 25218399 [TBL] [Abstract][Full Text] [Related]
37. Characterization of a novel vip3-type gene from Bacillus thuringiensis and evidence of its presence on a large plasmid. Mesrati LA; Tounsi S; Jaoua S FEMS Microbiol Lett; 2005 Mar; 244(2):353-8. PubMed ID: 15766790 [TBL] [Abstract][Full Text] [Related]
38. Downregulation of Chilo suppressalis alkaline phosphatase genes associated with resistance to three transgenic Bacillus thuringiensis rice lines. Qiu L; Wang P; Wu T; Li B; Wang X; Lei C; Lin Y; Zhao J; Ma W Insect Mol Biol; 2018 Feb; 27(1):83-89. PubMed ID: 28940938 [TBL] [Abstract][Full Text] [Related]
39. Field-Evolved Resistance in Corn Earworm to Cry Proteins Expressed by Transgenic Sweet Corn. Dively GP; Venugopal PD; Finkenbinder C PLoS One; 2016; 11(12):e0169115. PubMed ID: 28036388 [TBL] [Abstract][Full Text] [Related]
40. Elimination of Gut Microbes with Antibiotics Confers Resistance to Bacillus thuringiensis Toxin Proteins in Helicoverpa armigera (Hubner). Visweshwar R; Sharma HC; Akbar SM; Sreeramulu K Appl Biochem Biotechnol; 2015 Dec; 177(8):1621-37. PubMed ID: 26384494 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]