BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

295 related articles for article (PubMed ID: 29777829)

  • 21. Evaluation of Rhodosporidium fluviale as biocontrol agent against Botrytis cinerea on apple fruit.
    Sansone G; Lambrese Y; Calvente V; Fernández G; Benuzzi D; Sanz Ferramola M
    Lett Appl Microbiol; 2018 May; 66(5):455-461. PubMed ID: 29495073
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Beneficial Bacteria Identified for the Control of
    South KA; Peduto Hand F; Jones ML
    Plant Dis; 2020 Jun; 104(6):1801-1810. PubMed ID: 32289248
    [No Abstract]   [Full Text] [Related]  

  • 23. Talaromyces pinophilus strain AUN-1 as a novel mycoparasite of Botrytis cinerea, the pathogen of onion scape and umbel blights.
    Abdel-Rahim IR; Abo-Elyousr KAM
    Microbiol Res; 2018; 212-213():1-9. PubMed ID: 29853163
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Antifungal Activity of Endophytic
    Li P; Feng B; Yao Z; Wei B; Zhao Y; Shi S
    Front Microbiol; 2022; 13():935675. PubMed ID: 35935203
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Real-time RT-PCR expression analysis of chitinase and endoglucanase genes in the three-way interaction between the biocontrol strain Clonostachys rosea IK726, Botrytis cinerea and strawberry.
    Mamarabadi M; Jensen B; Jensen DF; Lübeck M
    FEMS Microbiol Lett; 2008 Aug; 285(1):101-10. PubMed ID: 18557783
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Are Bacterial Volatile Compounds Poisonous Odors to a Fungal Pathogen Botrytis cinerea, Alarm Signals to Arabidopsis Seedlings for Eliciting Induced Resistance, or Both?
    Sharifi R; Ryu CM
    Front Microbiol; 2016; 7():196. PubMed ID: 26941721
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Genomic Analysis and Secondary Metabolites Production of the Endophytic
    Nifakos K; Tsalgatidou PC; Thomloudi EE; Skagia A; Kotopoulis D; Baira E; Delis C; Papadimitriou K; Markellou E; Venieraki A; Katinakis P
    Plants (Basel); 2021 Aug; 10(8):. PubMed ID: 34451760
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Volatile organic compounds from Wickerhamomyces anomalus, Metschnikowia pulcherrima and Saccharomyces cerevisiae inhibit growth of decay causing fungi and control postharvest diseases of strawberries.
    Oro L; Feliziani E; Ciani M; Romanazzi G; Comitini F
    Int J Food Microbiol; 2018 Jan; 265():18-22. PubMed ID: 29107842
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Screening and Evaluation of Yeast Antagonists for Biological Control of
    Chen PH; Chen RY; Chou JY
    Mycobiology; 2018; 46(1):33-46. PubMed ID: 29998031
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Biological Control of Botrytis cinerea: Interactions with Native Vineyard Yeasts from Washington State.
    Wang X; Glawe DA; Kramer E; Weller D; Okubara PA
    Phytopathology; 2018 Jun; 108(6):691-701. PubMed ID: 29334476
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Alternative control of grape rots by essential oils of two Eucalyptus species.
    Pedrotti C; Marcon ÂR; Delamare APL; Echeverrigaray S; da Silva Ribeiro RT; Schwambach J
    J Sci Food Agric; 2019 Nov; 99(14):6552-6561. PubMed ID: 31321781
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Evaluation of the effects of chemical versus biological control on Botrytis cinerea agent of gray mould disease of strawberry.
    Alizadeh HR; Sharifi-Tehrani A; Hedjaroude GA
    Commun Agric Appl Biol Sci; 2007; 72(4):795-800. PubMed ID: 18396812
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Mode of antagonism of Brevibacillus brevis against Botrytis cinerea in vitro.
    Edwards SG; Seddon B
    J Appl Microbiol; 2001 Oct; 91(4):652-9. PubMed ID: 11576302
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Control of postharvest Botrytis fruit rot of strawberry by volatile organic compounds of Candida intermedia.
    Huang R; Li GQ; Zhang J; Yang L; Che HJ; Jiang DH; Huang HC
    Phytopathology; 2011 Jul; 101(7):859-69. PubMed ID: 21323467
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Antifungal effect of volatile organic compounds produced by Bacillus amyloliquefaciens CPA-8 against fruit pathogen decays of cherry.
    Gotor-Vila A; Teixidó N; Di Francesco A; Usall J; Ugolini L; Torres R; Mari M
    Food Microbiol; 2017 Jun; 64():219-225. PubMed ID: 28213029
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Biocontrol potential of
    Ajijah N; Fiodor A; Dziurzynski M; Stasiuk R; Pawlowska J; Dziewit L; Pranaw K
    Front Plant Sci; 2023; 14():1288408. PubMed ID: 38143572
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Endophytic Fungi Isolated from Plants Growing in Central Andean Precordillera of Chile with Antifungal Activity against
    Vidal A; Parada R; Mendoza L; Cotoras M
    J Fungi (Basel); 2020 Aug; 6(3):. PubMed ID: 32858807
    [No Abstract]   [Full Text] [Related]  

  • 38. Endophytes and Epiphytes From the Grapevine Leaf Microbiome as Potential Biocontrol Agents Against Phytopathogens.
    Bruisson S; Zufferey M; L'Haridon F; Trutmann E; Anand A; Dutartre A; De Vrieze M; Weisskopf L
    Front Microbiol; 2019; 10():2726. PubMed ID: 31849878
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Characterization of a new Bacillus velezensis as a powerful biocontrol agent against tomato gray mold.
    Li S; Xiao Q; Yang H; Huang J; Li Y
    Pestic Biochem Physiol; 2022 Oct; 187():105199. PubMed ID: 36127070
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Biological control of strawberry gray mold caused by Botrytis cinerea using Bacillus licheniformis N1 formulation.
    Kim JH; Lee SH; Kim CS; Lim EK; Choi KH; Kong HG; Kim DW; Lee SW; Moon BJ
    J Microbiol Biotechnol; 2007 Mar; 17(3):438-44. PubMed ID: 18050947
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.