BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

359 related articles for article (PubMed ID: 29777936)

  • 61. Highly photoluminescent tryptophan-coated copper nanoclusters based turn-off fluorescent probe for determination of tetracyclines.
    Zou T; Li S; Yao G; Qu R; Yang W; Wang H; Tan W; Yang M
    Chemosphere; 2023 Oct; 338():139452. PubMed ID: 37437625
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Cysteamine-capped copper nanoclusters as a highly selective turn-on fluorescent assay for the detection of aluminum ions.
    Boonmee C; Promarak V; Tuntulani T; Ngeontae W
    Talanta; 2018 Feb; 178():796-804. PubMed ID: 29136897
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Tuning of gold nanoclusters sensing applications with bovine serum albumin and bromelain for detection of Hg
    Bhamore JR; Jha S; Basu H; Singhal RK; Murthy ZVP; Kailasa SK
    Anal Bioanal Chem; 2018 Apr; 410(11):2781-2791. PubMed ID: 29480389
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Facile preparation of bimetallic Au-Cu nanoclusters as fluorescent nanoprobes for sensitive detection of Cr
    Shi Z; Hu B; Ge S; Chi B; Yan X; Zheng X
    Spectrochim Acta A Mol Biomol Spectrosc; 2023 Nov; 301():122855. PubMed ID: 37301031
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Ratiometric fluorescent sensing of ethanol based on copper nanoclusters with tunable dual emission.
    Hu X; Cao H; Dong W; Tang J
    Talanta; 2021 Oct; 233():122480. PubMed ID: 34215108
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Fluorescent folic acid-capped copper nanoclusters for the determination of rifampicin based on inner filter effect.
    Zhang Y; Deng Q; Tang C; Zhang M; Huang Z; Cai Z
    Spectrochim Acta A Mol Biomol Spectrosc; 2023 Feb; 286():121944. PubMed ID: 36228492
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Copper nanoclusters as probes for turn-on fluorescence sensing of L-lysine.
    Zhang M; Qiao J; Zhang S; Qi L
    Talanta; 2018 May; 182():595-599. PubMed ID: 29501198
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Highly sensitive and selective fluorescence sensing of nitrofurantoin based on water-soluble copper nanoclusters.
    Cai Z; Pang S; Wu L; Hao E; Rong J
    Spectrochim Acta A Mol Biomol Spectrosc; 2021 Jul; 255():119737. PubMed ID: 33812238
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Synthesis of highly fluorescent gold nanoclusters using egg white proteins.
    Joseph D; Geckeler KE
    Colloids Surf B Biointerfaces; 2014 Mar; 115():46-50. PubMed ID: 24321847
    [TBL] [Abstract][Full Text] [Related]  

  • 70. An aqueous friendly chemosensor derived from vitamin B₆ cofactor for colorimetric sensing of Cu²⁺ and fluorescent turn-off sensing of Fe³⁺.
    Sharma D; Kuba A; Thomas R; Kumar R; Choi HJ; Sahoo SK
    Spectrochim Acta A Mol Biomol Spectrosc; 2016 Jan; 153():393-6. PubMed ID: 26344485
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Enhancement of fluorescence brightness and stability of copper nanoclusters using Zn
    Li D; Zhao Y; Chen Z; Mei X; Qiu X
    Mater Sci Eng C Mater Biol Appl; 2017 Sep; 78():653-657. PubMed ID: 28576034
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Turn-on fluorescence determination of sulfide based on site-occupying modulation of MOF-copper nanocluster interaction.
    Hu X; Tang J; Shen Y
    Mikrochim Acta; 2022 Aug; 189(8):306. PubMed ID: 35915277
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Aggregation-induced structure transition of protein-stabilized zinc/copper nanoclusters for amplified chemiluminescence.
    Chen H; Lin L; Li H; Li J; Lin JM
    ACS Nano; 2015 Feb; 9(2):2173-83. PubMed ID: 25647180
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Copper nanocluster-based fluorescence enhanced determination of d-penicillamine.
    Ma C; Ren W; Tang J; Wang X; Ji D; Meng R; Zhang C; Wang Q
    Luminescence; 2019 Nov; 34(7):767-773. PubMed ID: 31267664
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Novel luteolin sensor of tannic acid-stabilized copper nanoclusters with blue-emitting fluorescence.
    Zhang S; Wang Z; Yan W; Guo Y
    Spectrochim Acta A Mol Biomol Spectrosc; 2021 Oct; 259():119887. PubMed ID: 33971442
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Synthesis of highly fluorescent metal (Ag, Au, Pt, and Cu) nanoclusters by electrostatically induced reversible phase transfer.
    Yuan X; Luo Z; Zhang Q; Zhang X; Zheng Y; Lee JY; Xie J
    ACS Nano; 2011 Nov; 5(11):8800-8. PubMed ID: 22010797
    [TBL] [Abstract][Full Text] [Related]  

  • 77. A Fluorescence Strategy for Silver Ion Assay via Cation Exchange Reaction and Formation of Poly(thymine)-templated Copper Nanoclusters.
    Wang X; Hu P; Wang Z; Liu Q; Xu T; Kou M; Huang K; Chen P
    Anal Sci; 2019 Aug; 35(8):917-922. PubMed ID: 31061241
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Fenton's reagent-tuned DNA-templated fluorescent silver nanoclusters as a versatile fluorescence probe and logic device.
    Zhang LP; Zhang XX; Hu B; Shen LM; Chen XW; Wang JH
    Analyst; 2012 Nov; 137(21):4974-80. PubMed ID: 22968007
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Fluorescent Gold Nanoclusters for Selective Detection of Dopamine in Cerebrospinal fluid.
    Govindaraju S; Ankireddy SR; Viswanath B; Kim J; Yun K
    Sci Rep; 2017 Jan; 7():40298. PubMed ID: 28067307
    [TBL] [Abstract][Full Text] [Related]  

  • 80. pH-modulated aggregation-induced emission of Au/Cu nanoclusters and its application to the determination of urea and dissolved ammonia.
    Qu F; Chen Y; Jiang D; Zhao XE
    Mikrochim Acta; 2021 Mar; 188(4):113. PubMed ID: 33677619
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 18.