BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

360 related articles for article (PubMed ID: 29777936)

  • 81. pH-modulated aggregation-induced emission of Au/Cu nanoclusters and its application to the determination of urea and dissolved ammonia.
    Qu F; Chen Y; Jiang D; Zhao XE
    Mikrochim Acta; 2021 Mar; 188(4):113. PubMed ID: 33677619
    [TBL] [Abstract][Full Text] [Related]  

  • 82. Cu(2+) modulated silver nanoclusters as an on-off-on fluorescence probe for the selective detection of L-histidine.
    Zheng X; Yao T; Zhu Y; Shi S
    Biosens Bioelectron; 2015 Apr; 66():103-8. PubMed ID: 25460889
    [TBL] [Abstract][Full Text] [Related]  

  • 83. A ratiometric fluorescence sensor based on gold silver nanoclusters and tungsten disulfide quantum dots with simple fabrication for the detection of copper ions in river water.
    Wang Z; Liu R; Fu Z; Yi X; Hu Y; Liu C; Pan D; Wu Z
    Anal Methods; 2023 May; 15(20):2505-2511. PubMed ID: 37183758
    [TBL] [Abstract][Full Text] [Related]  

  • 84. A novel turn-on fluorescent probe for Al
    Dai Y; Fu J; Yao K; Song Q; Xu K; Pang X
    Spectrochim Acta A Mol Biomol Spectrosc; 2018 Mar; 192():257-262. PubMed ID: 29154217
    [TBL] [Abstract][Full Text] [Related]  

  • 85. A selective and sensitive optical sensor for dissolved ammonia detection via agglomeration of fluorescent Ag nanoclusters and temperature gradient headspace single drop microextraction.
    Dong JX; Gao ZF; Zhang Y; Li BL; Li NB; Luo HQ
    Biosens Bioelectron; 2017 May; 91():155-161. PubMed ID: 28006683
    [TBL] [Abstract][Full Text] [Related]  

  • 86. Reversible fluorescence modulation of BSA stabilised copper nanoclusters for the selective detection of protamine and heparin.
    Aparna RS; Anjali Devi JS; Anjana RR; Nebu J; George S
    Analyst; 2019 Feb; 144(5):1799-1808. PubMed ID: 30672921
    [TBL] [Abstract][Full Text] [Related]  

  • 87. Dual-emission carbon dots-stabilized copper nanoclusters for ratiometric and visual detection of Cr
    Bai H; Tu Z; Liu Y; Tai Q; Guo Z; Liu S
    J Hazard Mater; 2020 Mar; 386():121654. PubMed ID: 31740316
    [TBL] [Abstract][Full Text] [Related]  

  • 88. Synergistic anticancer activity of fluorescent copper nanoclusters and cisplatin delivered through a hydrogel nanocarrier.
    Ghosh R; Goswami U; Ghosh SS; Paul A; Chattopadhyay A
    ACS Appl Mater Interfaces; 2015 Jan; 7(1):209-22. PubMed ID: 25475566
    [TBL] [Abstract][Full Text] [Related]  

  • 89. Use of fluorescent DNA-templated gold/silver nanoclusters for the detection of sulfide ions.
    Chen WY; Lan GY; Chang HT
    Anal Chem; 2011 Dec; 83(24):9450-5. PubMed ID: 22029551
    [TBL] [Abstract][Full Text] [Related]  

  • 90. A highly selective fluorescent sensor for chlortetracycline based on histidine-templated copper nanoclusters.
    Wang XS; Zhang S
    Spectrochim Acta A Mol Biomol Spectrosc; 2022 Nov; 281():121588. PubMed ID: 35803106
    [TBL] [Abstract][Full Text] [Related]  

  • 91. Blue emitting copper nanoclusters as colorimetric and fluorescent probe for the selective detection of bilirubin.
    R S A; J S AD; John N; K A; S S S; George S
    Spectrochim Acta A Mol Biomol Spectrosc; 2018 Jun; 199():123-129. PubMed ID: 29579715
    [TBL] [Abstract][Full Text] [Related]  

  • 92. Cu Nanoclusters: Novel Electrochemiluminescence Emitters for Bioanalysis.
    Zhao M; Chen AY; Huang D; Zhuo Y; Chai YQ; Yuan R
    Anal Chem; 2016 Dec; 88(23):11527-11532. PubMed ID: 27809492
    [TBL] [Abstract][Full Text] [Related]  

  • 93. Fluorescence Detection of p-Nitrophenol in Water Using Bovine Serum Albumin Capped ag Nanoclusters.
    Mao M; Deng C; He Y; Ge Y; Song G
    J Fluoresc; 2017 Jul; 27(4):1421-1426. PubMed ID: 28401411
    [TBL] [Abstract][Full Text] [Related]  

  • 94. Polyethyleneimine capped bimetallic Au/Pt nanoclusters are a viable fluorescent probe for specific recognition of chlortetracycline among other tetracycline antibiotics.
    Xu N; Meng L; Li HW; Lu DY; Wu Y
    Mikrochim Acta; 2018 May; 185(6):294. PubMed ID: 29752570
    [TBL] [Abstract][Full Text] [Related]  

  • 95. Ligand-Capped CdTe Quantum Dots as a Fluorescent Nanosensor for Detection of Copper Ions in Environmental Water Sample.
    Elmizadeh H; Soleimani M; Faridbod F; Bardajee GR
    J Fluoresc; 2017 Nov; 27(6):2323-2333. PubMed ID: 28936785
    [TBL] [Abstract][Full Text] [Related]  

  • 96. Copper nanoclusters capped with tannic acid as a fluorescent probe for real-time determination of the activity of pyrophosphatase.
    Liu Q; Lai Q; Li N; Su X
    Mikrochim Acta; 2018 Feb; 185(3):182. PubMed ID: 29594686
    [TBL] [Abstract][Full Text] [Related]  

  • 97. Ascorbic acid stabilised copper nanoclusters as fluorescent sensors for detection of quercetin.
    Cai Z; Li H; Wu J; Zhu L; Ma X; Zhang C
    RSC Adv; 2020 Feb; 10(15):8989-8993. PubMed ID: 35496543
    [TBL] [Abstract][Full Text] [Related]  

  • 98. A single-shot diagnostic platform based on copper nanoclusters coated with cetyl trimethylammonium bromide for determination of carbamazepine in exhaled breath condensate.
    Hatefi A; Rahimpour E; Khoubnasabjafari M; Edalat M; Jouyban-Gharamaleki V; Alvani-Alamdari S; Nokhodchi A; Pournaghi-Azar MH; Jouyban A
    Mikrochim Acta; 2019 Feb; 186(3):194. PubMed ID: 30778721
    [TBL] [Abstract][Full Text] [Related]  

  • 99. Au nanoclusters/porous silica particles nanocomposites as fluorescence enhanced sensors for sensing and mapping of copper(II) in cells.
    Wang S; Yang B; Zhang Z; Xu X; Li H; Cheng G; Yang Z; Du H; Yang Y; Yang X
    Nanotechnology; 2019 Nov; 30(47):475701. PubMed ID: 31430734
    [TBL] [Abstract][Full Text] [Related]  

  • 100. DOPA-mediated reduction allows the facile synthesis of fluorescent gold nanoclusters for use as sensing probes for ferric ions.
    Ho JA; Chang HC; Su WT
    Anal Chem; 2012 Apr; 84(7):3246-53. PubMed ID: 22364482
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 18.