These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 2977801)

  • 1. The effect of pH on the calcium dependence of calcium accumulation in dog cardiac muscle sarcoplasmic reticulum.
    Grassi de Gende AO
    J Mol Cell Cardiol; 1988 Dec; 20(12):1087-93. PubMed ID: 2977801
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of pH on calcium ion dependence of dog cardiac sarcoplasmic reticulum adenosine triphosphatase activity.
    Grassi de Gende AO; Alonso GL
    J Mol Cell Cardiol; 1985 May; 17(5):505-9. PubMed ID: 3162033
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evidence for a calcium-sensitive factor which alters the alkaline pH sensitivity of sarcoplasmic reticulum calcium transport.
    Tate CA; Chu A; McMillin-Wood J; Van Winkle WB; Entman ML
    J Biol Chem; 1981 Mar; 256(6):2934-9. PubMed ID: 6451623
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Inhibitory and stimulatory effects of fluoride on the calcium pump of cardiac sarcoplasmic reticulum.
    Narayanan N; Su N; Bedard P
    Biochim Biophys Acta; 1991 Nov; 1070(1):83-91. PubMed ID: 1836355
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Calmodulin-dependent elevation of calcium transport associated with calmodulin-dependent phosphorylation in cardiac sarcoplasmic reticulum.
    Plank B; Wyskovsky W; Hellmann G; Suko J
    Biochim Biophys Acta; 1983 Jul; 732(1):99-109. PubMed ID: 6307368
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The effect of pH on the transient-state kinetics of Ca2+-Mg2+-ATPase of cardiac sarcoplasmic reticulum. A comparison with skeletal sarcoplasmic reticulum.
    Mandel F; Kranias EG; Grassi de Gende A; Sumida M; Schwartz A
    Circ Res; 1982 Feb; 50(2):310-7. PubMed ID: 6120049
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Effects of acidosis and alkalosis on the sarcoplasmic reticulum of the heart].
    Holguín JA; Sierra M; Ramírez MC
    Arch Inst Cardiol Mex; 1985; 55(3):197-207. PubMed ID: 2932071
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Halothane and isoflurane effects on Ca2+ fluxes of isolated myocardial sarcoplasmic reticulum.
    Frazer MJ; Lynch C
    Anesthesiology; 1992 Aug; 77(2):316-23. PubMed ID: 1386498
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Regulation of Ca2+ transport by sarcoplasmic reticulum Ca2+-ATPase at limiting [Ca2+].
    Berman MC
    Biochim Biophys Acta; 1999 Apr; 1418(1):48-60. PubMed ID: 10209210
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of changing Ca2+-to-H+ ratio on Ca2+ uptake by cardiac sarcoplasmic reticulum.
    Levitsky DO; Benevolensky DS
    Am J Physiol; 1986 Mar; 250(3 Pt 2):H360-5. PubMed ID: 3953833
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Kinetic differences in the phospholamban-regulated calcium pump when studied in crude and purified cardiac sarcoplasmic reticulum vesicles.
    Antipenko A; Spielman AI; Kirchberger MA
    J Membr Biol; 1999 Feb; 167(3):257-65. PubMed ID: 9929378
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Membrane phosphorylation protects the cardiac sarcoplasmic reticulum Ca(2+)-ATPase against chlorinated oxidants in vitro.
    Antipenko AY; Kirchberger MA
    Cardiovasc Res; 1997 Oct; 36(1):67-77. PubMed ID: 9415274
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Stimulation of canine cardiac sarcoplasmic reticulum Ca2+ uptake by dihydropyridine Ca2+ antagonists.
    Movsesian MA; Ambudkar IS; Adelstein RS; Shamoo AE
    Biochem Pharmacol; 1985 Jan; 34(2):195-201. PubMed ID: 3155615
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evidence for an effect of phospholamban on the regulatory role of ATP in calcium uptake by the calcium pump of the cardiac sarcoplasmic reticulum.
    Lu YZ; Xu ZC; Kirchberger MA
    Biochemistry; 1993 Mar; 32(12):3105-11. PubMed ID: 8384487
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of endogenous calcium transport inhibitor from heart muscle on the active calcium uptake and passive calcium release properties of sarcoplasmic reticulum.
    Narayanan N; Bedard P; Waraich TS
    Can J Physiol Pharmacol; 1989 Sep; 67(9):999-1006. PubMed ID: 2598137
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Stabilization of rat cardiac sacroplasmic reticulum Ca2+ uptake activity and isolation of vesicles with improved calcium uptake activity.
    Feher JJ; LeBolt WR
    Mol Cell Biochem; 1990 Dec; 99(1):41-52. PubMed ID: 2149164
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization of Ca2+ release from the sarcoplasmic reticulum of myocardium and vascular smooth muscle.
    Benevolensky DS; Menshikova EV; Watras J; Levitsky DO; Ritov VB
    Biomed Biochim Acta; 1987; 46(8-9):S393-8. PubMed ID: 3501718
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The heavy metal ions Ag+ and Hg2+ trigger calcium release from cardiac sarcoplasmic reticulum.
    Prabhu SD; Salama G
    Arch Biochem Biophys; 1990 Feb; 277(1):47-55. PubMed ID: 2137685
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Selective inhibition of oxalate-stimulated Ca2+ transport by cyclopiazonic acid and thapsigargin in smooth muscle microsomes.
    Darby PJ; Kwan CY; Daniel EE
    Can J Physiol Pharmacol; 1996 Feb; 74(2):182-92. PubMed ID: 8723031
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of perfusate [Ca2+] on cardiac sarcoplasmic reticulum Ca2+ release channel in isolated rat hearts.
    Abdelmeguid AE; Feher JJ
    Circ Res; 1992 Nov; 71(5):1049-58. PubMed ID: 1382883
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.