These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
149 related articles for article (PubMed ID: 29778016)
1. Multiscale reconstruction of a synthetic biomimetic micro-niche for enhancing and monitoring the differentiation of stem cells. Li R; Li J; Xu J; Hong Wong DS; Chen X; Yuan W; Bian L Biomaterials; 2018 Aug; 173():87-99. PubMed ID: 29778016 [TBL] [Abstract][Full Text] [Related]
2. Time-responsive osteogenic niche of stem cells: A sequentially triggered, dual-peptide loaded, alginate hybrid system for promoting cell activity and osteo-differentiation. Luo Z; Zhang S; Pan J; Shi R; Liu H; Lyu Y; Han X; Li Y; Yang Y; Xu Z; Sui Y; Luo E; Zhang Y; Wei S Biomaterials; 2018 May; 163():25-42. PubMed ID: 29452946 [TBL] [Abstract][Full Text] [Related]
3. Near-infrared control and real-time detection of osteogenic differentiation in mesenchymal stem cells by multifunctional upconversion nanoparticles. Wang K; Wu Q; Wang X; Liang G; Yang A; Li J Nanoscale; 2020 May; 12(18):10106-10116. PubMed ID: 32350492 [TBL] [Abstract][Full Text] [Related]
4. Hydrogels functionalized with N-cadherin mimetic peptide enhance osteogenesis of hMSCs by emulating the osteogenic niche. Zhu M; Lin S; Sun Y; Feng Q; Li G; Bian L Biomaterials; 2016 Jan; 77():44-52. PubMed ID: 26580785 [TBL] [Abstract][Full Text] [Related]
5. Interactions between structural and chemical biomimetism in synthetic stem cell niches. Nava MM; Raimondi MT; Credi C; De Marco C; Turri S; Cerullo G; Osellame R Biomed Mater; 2015 Jan; 10(1):015012. PubMed ID: 25594262 [TBL] [Abstract][Full Text] [Related]
6. Non-invasive tracking of hydrogel degradation using upconversion nanoparticles. Dong Y; Jin G; Ji C; He R; Lin M; Zhao X; Li A; Lu TJ; Xu F Acta Biomater; 2017 Jun; 55():410-419. PubMed ID: 28428038 [TBL] [Abstract][Full Text] [Related]
7. Oxidized alginate hydrogels with the GHK peptide enhance cord blood mesenchymal stem cell osteogenesis: A paradigm for metabolomics-based evaluation of biomaterial design. Klontzas ME; Reakasame S; Silva R; Morais JCF; Vernardis S; MacFarlane RJ; Heliotis M; Tsiridis E; Panoskaltsis N; Boccaccini AR; Mantalaris A Acta Biomater; 2019 Apr; 88():224-240. PubMed ID: 30772514 [TBL] [Abstract][Full Text] [Related]
8. Biomimetic macroporous PEG hydrogels as 3D scaffolds for the multiplication of human hematopoietic stem and progenitor cells. Raic A; Rödling L; Kalbacher H; Lee-Thedieck C Biomaterials; 2014 Jan; 35(3):929-40. PubMed ID: 24176196 [TBL] [Abstract][Full Text] [Related]
9. Biomimetic mineralizable collagen hydrogels for dynamic bone matrix formation to promote osteogenesis. Chen L; Wu C; Chen S; Zhang Y; Liu A; Ding J; Wei D; Guo Z; Sun J; Fan H J Mater Chem B; 2020 Apr; 8(15):3064-3075. PubMed ID: 32202266 [TBL] [Abstract][Full Text] [Related]
10. Engineering Cellular Microenvironments with Photo- and Enzymatically Responsive Hydrogels: Toward Biomimetic 3D Cell Culture Models. Tam RY; Smith LJ; Shoichet MS Acc Chem Res; 2017 Apr; 50(4):703-713. PubMed ID: 28345876 [TBL] [Abstract][Full Text] [Related]
11. Biomimetic microspheres for 3D mesenchymal stem cell culture and characterization. Clara-Trujillo S; Marín-Payá JC; Cordón L; Sempere A; Gallego Ferrer G; Gómez Ribelles JL Colloids Surf B Biointerfaces; 2019 May; 177():68-76. PubMed ID: 30711761 [TBL] [Abstract][Full Text] [Related]
12. Regulating dynamic signaling between hematopoietic stem cells and niche cells via a hydrogel matrix. Mahadik BP; Bharadwaj NA; Ewoldt RH; Harley BA Biomaterials; 2017 May; 125():54-64. PubMed ID: 28231508 [TBL] [Abstract][Full Text] [Related]
13. Presentation of BMP-2 mimicking peptides in 3D hydrogels directs cell fate commitment in osteoblasts and mesenchymal stem cells. Madl CM; Mehta M; Duda GN; Heilshorn SC; Mooney DJ Biomacromolecules; 2014 Feb; 15(2):445-55. PubMed ID: 24400664 [TBL] [Abstract][Full Text] [Related]
14. A collagen mimetic peptide-modified hyaluronic acid hydrogel system with enzymatically mediated degradation for mesenchymal stem cell differentiation. Ren Y; Zhang H; Qin W; Du B; Liu L; Yang J Mater Sci Eng C Mater Biol Appl; 2020 Mar; 108():110276. PubMed ID: 31923951 [TBL] [Abstract][Full Text] [Related]
15. Biomimetic niche for neural stem cell differentiation using poly-L-lysine/hyaluronic acid multilayer films. Lee IC; Wu YC; Cheng EM; Yang WT J Biomater Appl; 2015 May; 29(10):1418-27. PubMed ID: 25502767 [TBL] [Abstract][Full Text] [Related]
16. Functionalized self-assembling peptide nanofiber hydrogels mimic stem cell niche to control human adipose stem cell behavior in vitro. Liu X; Wang X; Wang X; Ren H; He J; Qiao L; Cui FZ Acta Biomater; 2013 Jun; 9(6):6798-805. PubMed ID: 23380207 [TBL] [Abstract][Full Text] [Related]
17. Sliding Hydrogels with Mobile Molecular Ligands and Crosslinks as 3D Stem Cell Niche. Tong X; Yang F Adv Mater; 2016 Sep; 28(33):7257-63. PubMed ID: 27305637 [TBL] [Abstract][Full Text] [Related]
18. A synthetic hydrogel for the high-throughput study of cell-ECM interactions. Rape AD; Zibinsky M; Murthy N; Kumar S Nat Commun; 2015 Sep; 6():8129. PubMed ID: 26350361 [TBL] [Abstract][Full Text] [Related]
19. Self-assembled peptide amphiphile nanofibers and peg composite hydrogels as tunable ECM mimetic microenvironment. Goktas M; Cinar G; Orujalipoor I; Ide S; Tekinay AB; Guler MO Biomacromolecules; 2015 Apr; 16(4):1247-58. PubMed ID: 25751623 [TBL] [Abstract][Full Text] [Related]