These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
151 related articles for article (PubMed ID: 29778219)
1. Survival of cyanobacteria in rivers following their release in water from large headwater reservoirs. Williamson N; Kobayashi T; Outhet D; Bowling LC Harmful Algae; 2018 May; 75():1-15. PubMed ID: 29778219 [TBL] [Abstract][Full Text] [Related]
2. [Effects of Cyanobacterial Blooms in Eutrophic Lakes on Water Quality of Connected Rivers]. Yu ML; Hong GX; Xu H; Zhu GW; Zhu MY; Quan QM Huan Jing Ke Xue; 2019 Feb; 40(2):603-613. PubMed ID: 30628322 [TBL] [Abstract][Full Text] [Related]
3. Use of three monitoring approaches to manage a major Chrysosporum ovalisporum bloom in the Murray River, Australia, 2016. Crawford A; Holliday J; Merrick C; Brayan J; van Asten M; Bowling L Environ Monit Assess; 2017 Apr; 189(4):202. PubMed ID: 28364328 [TBL] [Abstract][Full Text] [Related]
4. Wastewater discharge with phytoplankton may favor cyanobacterial development in the main drinking water supply river in Uruguay. Olano H; Martigani F; Somma A; Aubriot L Environ Monit Assess; 2019 Feb; 191(3):146. PubMed ID: 30737570 [TBL] [Abstract][Full Text] [Related]
5. Estimation of cyanobacteria biovolume in water reservoirs by MERIS sensor. Medina-Cobo M; Domínguez JA; Quesada A; de Hoyos C Water Res; 2014 Oct; 63():10-20. PubMed ID: 24971813 [TBL] [Abstract][Full Text] [Related]
6. Use of cyanobacteria to assess water quality in running waters. Douterelo I; Perona E; Mateo P Environ Pollut; 2004; 127(3):377-84. PubMed ID: 14638298 [TBL] [Abstract][Full Text] [Related]
7. Eutrophication downstream from small reservoirs in mountain rivers of Central Spain. Camargo JA; Alonso A; de la Puente M Water Res; 2005 Sep; 39(14):3376-84. PubMed ID: 16039693 [TBL] [Abstract][Full Text] [Related]
8. Temporal shifts in cyanobacterial communities at different sites on the Nakdong River in Korea. Hur M; Lee I; Tak BM; Lee HJ; Yu JJ; Cheon SU; Kim BS Water Res; 2013 Dec; 47(19):6973-82. PubMed ID: 24169512 [TBL] [Abstract][Full Text] [Related]
9. The influence of hydrological conditions on phytoplankton community structure and cyanopeptide concentration in dammed lowland river. Grabowska M; Mazur-Marzec H Environ Monit Assess; 2016 Aug; 188(8):488. PubMed ID: 27468846 [TBL] [Abstract][Full Text] [Related]
10. Spatial and temporal variability of river periphyton below a hypereutrophic lake and a series of dams. Gillett ND; Pan Y; Eli Asarian J; Kann J Sci Total Environ; 2016 Jan; 541():1382-1392. PubMed ID: 26479912 [TBL] [Abstract][Full Text] [Related]
11. Toxicity of a cyanobacteria bloom in Barra Bonita Reservoir (Middle Tietê River, São Paulo, Brazil). Sotero-Santos RB; Silva CR; Verani NF; Nonaka KO; Rocha O Ecotoxicol Environ Saf; 2006 Jun; 64(2):163-70. PubMed ID: 15993489 [TBL] [Abstract][Full Text] [Related]
12. Occurrence and toxicity of Microcystis aeruginosa (Cyanobacteria) in the Paraná River, downstream of the Yacyretá dam (Argentina). Forastier ME; Zalocar Y; Andrinolo D; Domitrovic HA Rev Biol Trop; 2016 Mar; 64(1):203-11. PubMed ID: 28862419 [TBL] [Abstract][Full Text] [Related]
13. Modelling the growth and movement of cyanobacteria in river systems. Guven B; Howard A Sci Total Environ; 2006 Sep; 368(2-3):898-908. PubMed ID: 16737730 [TBL] [Abstract][Full Text] [Related]
14. Predicting cyanobacteria bloom occurrence in lakes and reservoirs before blooms occur. Zhao CS; Shao NF; Yang ST; Ren H; Ge YR; Feng P; Dong BE; Zhao Y Sci Total Environ; 2019 Jun; 670():837-848. PubMed ID: 30921717 [TBL] [Abstract][Full Text] [Related]
15. Nuisance phytoplankton transport is enhanced by high flow in the main river for drinking water in Uruguay. Somma A; Bonilla S; Aubriot L Environ Sci Pollut Res Int; 2022 Jan; 29(4):5634-5647. PubMed ID: 34424466 [TBL] [Abstract][Full Text] [Related]
16. Turbulence exerts nutrients uptake and assimilation of bloom-forming Dolichospermum through modulating morphological traits: Field and chemostat culture studies. Zhang S; Xiao Y; Li Z; Wang S; Guo J; Lu L Sci Total Environ; 2019 Jun; 671():329-338. PubMed ID: 30933789 [TBL] [Abstract][Full Text] [Related]
17. Assessing the origin of a massive cyanobacterial bloom in the Río de la Plata (2019): Towards an early warning system. Aubriot L; Zabaleta B; Bordet F; Sienra D; Risso J; Achkar M; Somma A Water Res; 2020 Aug; 181():115944. PubMed ID: 32512324 [TBL] [Abstract][Full Text] [Related]
18. Extreme weather event may induce Microcystis blooms in the Qiantang River, Southeast China. Guo C; Zhu G; Paerl HW; Zhu M; Yu L; Zhang Y; Liu M; Zhang Y; Qin B Environ Sci Pollut Res Int; 2018 Aug; 25(22):22273-22284. PubMed ID: 29806052 [TBL] [Abstract][Full Text] [Related]
19. Ten-year survey of cyanobacterial blooms in Ohio's waterbodies using satellite remote sensing. Gorham T; Jia Y; Shum CK; Lee J Harmful Algae; 2017 Jun; 66():13-19. PubMed ID: 28602249 [TBL] [Abstract][Full Text] [Related]
20. Rise of toxic cyanobacterial blooms is promoted by agricultural intensification in the basin of a large subtropical river of South America. Kruk C; Segura A; Piñeiro G; Baldassini P; Pérez-Becoña L; García-Rodríguez F; Perera G; Piccini C Glob Chang Biol; 2023 Apr; 29(7):1774-1790. PubMed ID: 36607161 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]