BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 29778536)

  • 1. Enhanced PKMT-substrate recognition through non active-site interactions.
    Kublanovsky M; Aharoni A; Levy D
    Biochem Biophys Res Commun; 2018 Jul; 501(4):1029-1033. PubMed ID: 29778536
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Approaching the catalytic mechanism of protein lysine methyltransferases by biochemical and simulation techniques.
    Schnee P; Pleiss J; Jeltsch A
    Crit Rev Biochem Mol Biol; 2024; 59(1-2):20-68. PubMed ID: 38449437
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanism of histone methylation catalyzed by protein lysine methyltransferase SET7/9 and origin of product specificity.
    Guo HB; Guo H
    Proc Natl Acad Sci U S A; 2007 May; 104(21):8797-802. PubMed ID: 17517655
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Substrate docking-mediated specific and efficient lysine methylation by the SET domain-containing histone methyltransferase SETD7.
    Liu H; Li Z; Yang Q; Liu W; Wan J; Li J; Zhang M
    J Biol Chem; 2019 Sep; 294(36):13355-13365. PubMed ID: 31324717
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Peptide inhibition of the SETD6 methyltransferase catalytic activity.
    Feldman M; Levy D
    Oncotarget; 2018 Jan; 9(4):4875-4885. PubMed ID: 29435148
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Approaches and Guidelines for the Identification of Novel Substrates of Protein Lysine Methyltransferases.
    Kudithipudi S; Jeltsch A
    Cell Chem Biol; 2016 Sep; 23(9):1049-1055. PubMed ID: 27569752
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Specificity analysis of protein lysine methyltransferases using SPOT peptide arrays.
    Kudithipudi S; Kusevic D; Weirich S; Jeltsch A
    J Vis Exp; 2014 Nov; (93):e52203. PubMed ID: 25489813
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Oligomerization and Auto-methylation of the Human Lysine Methyltransferase SETD6.
    Weil LE; Shmidov Y; Kublanovsky M; Morgenstern D; Feldman M; Bitton R; Levy D
    J Mol Biol; 2018 Oct; 430(21):4359-4368. PubMed ID: 30189201
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Lysine methylation of the NF-κB subunit RelA by SETD6 couples activity of the histone methyltransferase GLP at chromatin to tonic repression of NF-κB signaling.
    Levy D; Kuo AJ; Chang Y; Schaefer U; Kitson C; Cheung P; Espejo A; Zee BM; Liu CL; Tangsombatvisit S; Tennen RI; Kuo AY; Tanjing S; Cheung R; Chua KF; Utz PJ; Shi X; Prinjha RK; Lee K; Garcia BA; Bedford MT; Tarakhovsky A; Cheng X; Gozani O
    Nat Immunol; 2011 Jan; 12(1):29-36. PubMed ID: 21131967
    [TBL] [Abstract][Full Text] [Related]  

  • 10. QM/MM MD and Free Energy Simulation Study of Methyl Transfer Processes Catalyzed by PKMTs and PRMTs.
    Chu Y; Guo H
    Interdiscip Sci; 2015 Sep; 7(3):309-18. PubMed ID: 26267708
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structural basis of SETD6-mediated regulation of the NF-kB network via methyl-lysine signaling.
    Chang Y; Levy D; Horton JR; Peng J; Zhang X; Gozani O; Cheng X
    Nucleic Acids Res; 2011 Aug; 39(15):6380-9. PubMed ID: 21515635
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An engineered variant of SETD3 methyltransferase alters target specificity from histidine to lysine methylation.
    Dai S; Horton JR; Wilkinson AW; Gozani O; Zhang X; Cheng X
    J Biol Chem; 2020 Feb; 295(9):2582-2589. PubMed ID: 31911441
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The methyltransferase SETD6 regulates Mitotic progression through PLK1 methylation.
    Feldman M; Vershinin Z; Goliand I; Elia N; Levy D
    Proc Natl Acad Sci U S A; 2019 Jan; 116(4):1235-1240. PubMed ID: 30622182
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A proteomic approach for the identification of novel lysine methyltransferase substrates.
    Levy D; Liu CL; Yang Z; Newman AM; Alizadeh AA; Utz PJ; Gozani O
    Epigenetics Chromatin; 2011 Oct; 4():19. PubMed ID: 22024134
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rubisco in complex with Rubisco large subunit methyltransferase.
    Raunser S; Magnani R; Huang Z; Houtz RL; Trievel RC; Penczek PA; Walz T
    Proc Natl Acad Sci U S A; 2009 Mar; 106(9):3160-5. PubMed ID: 19208805
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Non-radioactive protein lysine methyltransferase microplate assay based on reading domains.
    Kudithipudi S; Kusevic D; Jeltsch A
    ChemMedChem; 2014 Mar; 9(3):554-9. PubMed ID: 23671032
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Kinetic isotope effects reveal early transition state of protein lysine methyltransferase SET8.
    Linscott JA; Kapilashrami K; Wang Z; Senevirathne C; Bothwell IR; Blum G; Luo M
    Proc Natl Acad Sci U S A; 2016 Dec; 113(52):E8369-E8378. PubMed ID: 27940912
    [TBL] [Abstract][Full Text] [Related]  

  • 18. How do SET-domain protein lysine methyltransferases achieve the methylation state specificity? Revisited by Ab initio QM/MM molecular dynamics simulations.
    Hu P; Wang S; Zhang Y
    J Am Chem Soc; 2008 Mar; 130(12):3806-13. PubMed ID: 18311969
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chemical and Biochemical Perspectives of Protein Lysine Methylation.
    Luo M
    Chem Rev; 2018 Jul; 118(14):6656-6705. PubMed ID: 29927582
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structural basis for the methylation site specificity of SET7/9.
    Couture JF; Collazo E; Hauk G; Trievel RC
    Nat Struct Mol Biol; 2006 Feb; 13(2):140-6. PubMed ID: 16415881
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.