These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 29778603)

  • 1. Interrogating the Dimerization Interface of the Prion Protein Via Site-Specific Mutations to p-Benzoyl-L-Phenylalanine.
    Sangeetham SB; Huszár K; Bencsura P; Nyeste A; Hunyadi-Gulyás É; Fodor E; Welker E
    J Mol Biol; 2018 Aug; 430(17):2784-2801. PubMed ID: 29778603
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Subunit interactions as mediated by "non-interface" residues in living cells for multiple homo-oligomeric proteins.
    Fu X; Wang Y; Song X; Shi X; Shao H; Liu Y; Zhang M; Chang Z
    Biochem Biophys Res Commun; 2019 Apr; 512(1):100-105. PubMed ID: 30871775
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identification and Structural Characterization of the Precursor Conformation of the Prion Protein which Directly Initiates Misfolding and Oligomerization.
    Moulick R; Udgaonkar JB
    J Mol Biol; 2017 Mar; 429(6):886-899. PubMed ID: 28147229
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Replica Exchange Molecular Dynamics Study of Dimerization in Prion Protein: Multiple Modes of Interaction and Stabilization.
    Chamachi NG; Chakrabarty S
    J Phys Chem B; 2016 Aug; 120(30):7332-45. PubMed ID: 27390876
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Crystallographic study of a site-specifically cross-linked protein complex with a genetically incorporated photoreactive amino acid.
    Sato S; Mimasu S; Sato A; Hino N; Sakamoto K; Umehara T; Yokoyama S
    Biochemistry; 2011 Jan; 50(2):250-7. PubMed ID: 21128684
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Unnatural amino acid mutagenesis reveals dimerization as a negative regulatory mechanism of VHR's phosphatase activity.
    Pavic K; Rios P; Dzeyk K; Koehler C; Lemke EA; Köhn M
    ACS Chem Biol; 2014 Jul; 9(7):1451-9. PubMed ID: 24798147
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pathogenic Mutations within the Disordered Palindromic Region of the Prion Protein Induce Structure Therein and Accelerate the Formation of Misfolded Oligomers.
    Sabareesan AT; Udgaonkar JB
    J Mol Biol; 2016 Oct; 428(20):3935-3947. PubMed ID: 27545411
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structural mechanisms of oligomer and amyloid fibril formation by the prion protein.
    Sengupta I; Udgaonkar JB
    Chem Commun (Camb); 2018 Jun; 54(49):6230-6242. PubMed ID: 29789820
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Salt-Mediated Oligomerization of the Mouse Prion Protein Monitored by Real-Time NMR.
    Sengupta I; Bhate SH; Das R; Udgaonkar JB
    J Mol Biol; 2017 Jun; 429(12):1852-1872. PubMed ID: 28502793
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electron-deficient p-benzoyl-l-phenylalanine derivatives increase covalent chemical capture yields for protein-protein interactions.
    Joiner CM; Breen ME; Mapp AK
    Protein Sci; 2019 Jun; 28(6):1163-1170. PubMed ID: 30977234
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A valine-to-lysine substitution at position 210 induces structural conversion of prion protein into a β-sheet rich oligomer.
    Kakuda K; Yamaguchi KI; Kuwata K; Honda R
    Biochem Biophys Res Commun; 2018 Nov; 506(1):81-86. PubMed ID: 30336980
    [TBL] [Abstract][Full Text] [Related]  

  • 12.
    Eraña H; Fernández-Borges N; Elezgarai SR; Harrathi C; Charco JM; Chianini F; Dagleish MP; Ortega G; Millet Ó; Castilla J
    J Virol; 2017 Dec; 91(24):. PubMed ID: 28978705
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Energy migration captures membrane-induced oligomerization of the prion protein.
    Agarwal A; Das D; Banerjee T; Mukhopadhyay S
    Biochim Biophys Acta Proteins Proteom; 2020 Feb; 1868(2):140324. PubMed ID: 31740413
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identification of Two Early Folding Stage Prion Non-Local Contacts Suggested to Serve as Key Steps in Directing the Final Fold to Be Either Native or Pathogenic.
    Bergasa-Caceres F; Rabitz HA
    Int J Mol Sci; 2021 Aug; 22(16):. PubMed ID: 34445324
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Generation of a new infectious recombinant prion: a model to understand Gerstmann-Sträussler-Scheinker syndrome.
    Elezgarai SR; Fernández-Borges N; Eraña H; Sevillano AM; Charco JM; Harrathi C; Saá P; Gil D; Kong Q; Requena JR; Andréoletti O; Castilla J
    Sci Rep; 2017 Aug; 7(1):9584. PubMed ID: 28851967
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Distinct effects of mutations on biophysical properties of human prion protein monomers and oligomers.
    Yu Y; Yu Z; Zheng Z; Wang H; Wu X; Guo C; Lin D
    Acta Biochim Biophys Sin (Shanghai); 2016 Nov; 48(11):1016-1025. PubMed ID: 27649893
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The protonation state of histidine 111 regulates the aggregation of the evolutionary most conserved region of the human prion protein.
    Fonseca-Ornelas L; Zweckstetter M
    Protein Sci; 2016 Aug; 25(8):1563-7. PubMed ID: 27184108
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Monitoring site-specific conformational changes in real-time reveals a misfolding mechanism of the prion protein.
    Sengupta I; Udgaonkar J
    Elife; 2019 Jun; 8():. PubMed ID: 31232689
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structural Modeling of Human Prion Protein's Point Mutations.
    Rossetti G; Carloni P
    Prog Mol Biol Transl Sci; 2017; 150():105-122. PubMed ID: 28838657
    [TBL] [Abstract][Full Text] [Related]  

  • 20. TRIC: Capturing the direct cellular targets of promoter-bound transcriptional activators.
    Dugan A; Pricer R; Katz M; Mapp AK
    Protein Sci; 2016 Aug; 25(8):1371-7. PubMed ID: 27213278
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.