BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 29778692)

  • 1. Two dimensional distribution measurement of electric current generated in a polymer electrolyte fuel cell using 49 NMR surface coils.
    Ogawa K; Sasaki T; Yoneda S; Tsujinaka K; Asai R
    Magn Reson Imaging; 2018 Sep; 51():163-172. PubMed ID: 29778692
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The influence of membrane electrode assembly water content on the performance of a polymer electrolyte membrane fuel cell as investigated by 1H NMR microscopy.
    Feindel KW; Bergens SH; Wasylishen RE
    Phys Chem Chem Phys; 2007 Apr; 9(15):1850-7. PubMed ID: 17415498
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development of an eight-channel NMR system using RF detection coils for measuring spatial distributions of current density and water content in the PEM of a PEFC.
    Ogawa K; Yokouchi Y; Haishi T; Ito K
    J Magn Reson; 2013 Sep; 234():147-53. PubMed ID: 23876781
    [TBL] [Abstract][Full Text] [Related]  

  • 4. NMR measurement system including two synchronized ring buffers, with 128 rf coils for in situ water monitoring in a polymer electrolyte fuel cell.
    Ogawa K; Haishi T; Aoki M; Hasegawa H; Morisaka S; Hashimoto S
    Rev Sci Instrum; 2017 Jan; 88(1):014701. PubMed ID: 28147668
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Catalytic synthesis of neutral hydrogen peroxide at a CoN2Cx cathode of a polymer electrolyte membrane fuel cell (PEMFC).
    Yamanaka I; Tazawa S; Murayama T; Iwasaki T; Takenaka S
    ChemSusChem; 2010; 3(1):59-62. PubMed ID: 19918834
    [No Abstract]   [Full Text] [Related]  

  • 6. Performance enhancement of polymer electrolyte membrane fuel cells by dual-layered membrane electrode assembly structures with carbon nanotubes.
    Jung DW; Kim JH; Kim SH; Kim JB; Oh ES
    J Nanosci Nanotechnol; 2013 May; 13(5):3650-4. PubMed ID: 23858921
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Determination of optimal parameters for dual-layer cathode of polymer electrolyte fuel cell using computational intelligence-aided design.
    Chen Y; Huang W; Peng B
    PLoS One; 2014; 9(12):e114223. PubMed ID: 25490761
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Engineering porous materials for fuel cell applications.
    Brandon NP; Brett DJ
    Philos Trans A Math Phys Eng Sci; 2006 Jan; 364(1838):147-59. PubMed ID: 18272457
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chitosan biopolymer for fuel cell applications.
    Ma J; Sahai Y
    Carbohydr Polym; 2013 Feb; 92(2):955-75. PubMed ID: 23399116
    [TBL] [Abstract][Full Text] [Related]  

  • 10. What happens inside a fuel cell? Developing an experimental functional map of fuel cell performance.
    Brett DJ; Kucernak AR; Aguiar P; Atkins SC; Brandon NP; Clague R; Cohen LF; Hinds G; Kalyvas C; Offer GJ; Ladewig B; Maher R; Marquis A; Shearing P; Vasileiadis N; Vesovic V
    Chemphyschem; 2010 Sep; 11(13):2714-31. PubMed ID: 20730848
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Magnetic resonance imaging of water content across the Nafion membrane in an operational PEM fuel cell.
    Zhang Z; Martin J; Wu J; Wang H; Promislow K; Balcom BJ
    J Magn Reson; 2008 Aug; 193(2):259-66. PubMed ID: 18555714
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Investigation of the O2 electrochemistry in a polymer electrolyte solid-state cell.
    Hassoun J; Croce F; Armand M; Scrosati B
    Angew Chem Int Ed Engl; 2011 Mar; 50(13):2999-3002. PubMed ID: 21365721
    [No Abstract]   [Full Text] [Related]  

  • 13. Water content distribution in a polymer electrolyte membrane for advanced fuel cell system with liquid water supply.
    Tsushima S; Teranishi K; Nishida K; Hirai S
    Magn Reson Imaging; 2005 Feb; 23(2):255-8. PubMed ID: 15833622
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nuclear magnetic resonance microimaging investigation of membrane electrode assembly of fuel cells: morphology and solvent dynamics.
    Wu Z; Wu CS; Chu PP; Ding S
    Magn Reson Imaging; 2009 Jul; 27(6):871-8. PubMed ID: 19106022
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Platinum dissolution and deposition in the polymer electrolyte membrane of a PEM fuel cell as studied by potential cycling.
    Yasuda K; Taniguchi A; Akita T; Ioroi T; Siroma Z
    Phys Chem Chem Phys; 2006 Feb; 8(6):746-52. PubMed ID: 16482315
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Observation of
    Oi T; Seki K; Kikawada Y; Yanase S
    Isotopes Environ Health Stud; 2019 May; 55(2):199-210. PubMed ID: 30744417
    [No Abstract]   [Full Text] [Related]  

  • 17. Remarkable impact of water on the discharge performance of a silicon-air battery.
    Cohn G; Macdonald DD; Ein-Eli Y
    ChemSusChem; 2011 Aug; 4(8):1124-9. PubMed ID: 21766461
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of the state of distribution of supported Pt nanoparticles on effective Pt utilization in polymer electrolyte fuel cells.
    Uchida M; Park YC; Kakinuma K; Yano H; Tryk DA; Kamino T; Uchida H; Watanabe M
    Phys Chem Chem Phys; 2013 Jul; 15(27):11236-47. PubMed ID: 23715296
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Improved fuel cell and electrode designs for producing electricity from microbial degradation.
    Park DH; Zeikus JG
    Biotechnol Bioeng; 2003 Feb; 81(3):348-55. PubMed ID: 12474258
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Water-based thixotropic polymer gel electrolyte for dye-sensitized solar cells.
    Park SJ; Yoo K; Kim JY; Kim JY; Lee DK; Kim B; Kim H; Kim JH; Cho J; Ko MJ
    ACS Nano; 2013 May; 7(5):4050-6. PubMed ID: 23618493
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.