These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

303 related articles for article (PubMed ID: 29778979)

  • 1. Exploring the relationship between stability and variability of the centre of mass and centre of pressure.
    Rajachandrakumar R; Mann J; Schinkel-Ivy A; Mansfield A
    Gait Posture; 2018 Jun; 63():254-259. PubMed ID: 29778979
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Increased use of stepping strategy in response to medio-lateral perturbations in the elderly relates to altered reactive tibialis anterior activity.
    Afschrift M; van Deursen R; De Groote F; Jonkers I
    Gait Posture; 2019 Feb; 68():575-582. PubMed ID: 30654320
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The effects of initial movement dynamics on human responses to postural perturbations.
    Murnaghan CD; Robinovitch SN
    Hum Mov Sci; 2013 Aug; 32(4):857-65. PubMed ID: 23958475
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Voluntary sway and rapid orthogonal transitions of voluntary sway in young adults, and low and high fall-risk older adults.
    Tucker MG; Kavanagh JJ; Morrison S; Barrett RS
    Clin Biomech (Bristol, Avon); 2009 Oct; 24(8):597-605. PubMed ID: 19564063
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Does increased gait variability improve stability when faced with an expected balance perturbation during treadmill walking?
    Nestico J; Novak A; Perry SD; Mansfield A
    Gait Posture; 2021 May; 86():94-100. PubMed ID: 33711616
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The control of lateral stability during rapid stepping reactions evoked by antero-posterior perturbation: does anticipatory control play a role?
    McIlroy WE; Maki BE
    Gait Posture; 1999 Jul; 9(3):190-8. PubMed ID: 10575080
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Muscle synergies involved in shifting the center of pressure while making a first step.
    Wang Y; Zatsiorsky VM; Latash ML
    Exp Brain Res; 2005 Nov; 167(2):196-210. PubMed ID: 16034579
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Influence of temporal pressure on anticipatory postural control of medio-lateral stability during rapid leg flexion.
    Yiou E; Hussein T; Larue J
    Gait Posture; 2012 Mar; 35(3):494-9. PubMed ID: 22153769
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Postural control of the trunk in response to lateral support surface translations during trunk movement and loading.
    Huang QM; Hodges PW; Thorstensson A
    Exp Brain Res; 2001 Dec; 141(4):552-9. PubMed ID: 11810148
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Adaptive recovery responses to repeated forward loss of balance in older adults.
    Barrett RS; Cronin NJ; Lichtwark GA; Mills PM; Carty CP
    J Biomech; 2012 Jan; 45(1):183-7. PubMed ID: 22018681
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The novel Next Step test is a reliable measure of anticipatory postural adjustments made by children with cerebral palsy prior to taking a step.
    Rapson R; Latour JM; Carter B; Pitsouni V; Marsden JF
    Gait Posture; 2023 Sep; 105():110-116. PubMed ID: 37541088
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Postural responses triggered by multidirectional leg lifts and surface tilts.
    Hughey LK; Fung J
    Exp Brain Res; 2005 Aug; 165(2):152-66. PubMed ID: 15940494
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reactive Balance in Individuals With Chronic Stroke: Biomechanical Factors Related to Perturbation-Induced Backward Falling.
    Salot P; Patel P; Bhatt T
    Phys Ther; 2016 Mar; 96(3):338-47. PubMed ID: 26206220
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Moving beyond quiet stance: applicability of the inverted pendulum model to stooping and crouching postures.
    Weaver TB; Glinka MN; Laing AC
    J Biomech; 2014 Nov; 47(14):3574-9. PubMed ID: 25262878
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of varying acceleration of platform translation and toes-up rotations on the pattern and magnitude of balance reactions in humans.
    Szturm T; Fallang B
    J Vestib Res; 1998; 8(5):381-97. PubMed ID: 9770656
    [TBL] [Abstract][Full Text] [Related]  

  • 16. NACOB presentation CSB New Investigator Award. Balance recovery from medio-lateral perturbations of the upper body during standing. North American Congress on Biomechanics.
    Rietdyk S; Patla AE; Winter DA; Ishac MG; Little CE
    J Biomech; 1999 Nov; 32(11):1149-58. PubMed ID: 10541064
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modeling margin of stability with feet in place following a postural perturbation: Effect of altered anthropometric models for estimated extrapolated centre of mass.
    Inkol KA; Huntley AH; Vallis LA
    Gait Posture; 2018 May; 62():434-439. PubMed ID: 29653405
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Influence of lateral destabilization on compensatory stepping responses.
    Maki BE; McIlroy WE; Perry SD
    J Biomech; 1996 Mar; 29(3):343-53. PubMed ID: 8850640
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Online mutability of step direction during rapid stepping reactions evoked by postural perturbation.
    Tripp BP; McIlroy WE; Maki BE
    IEEE Trans Neural Syst Rehabil Eng; 2004 Mar; 12(1):140-52. PubMed ID: 15068197
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Consecutive Postural Adjustments (CPAs) that follow foot placement in single stepping.
    Memari S; Do MC; Le Bozec S; Bouisset S
    Neurosci Lett; 2013 May; 543():32-6. PubMed ID: 23562509
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.