These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
102 related articles for article (PubMed ID: 29779078)
1. Effects of elevated pressure on Pseudanabaena galeata Böcher in varying light and dark environments. Abeynayaka HDL; Asaeda T; Rashid MH Environ Sci Pollut Res Int; 2018 Jul; 25(21):21224-21232. PubMed ID: 29779078 [TBL] [Abstract][Full Text] [Related]
2. Buoyancy Limitation of Filamentous Cyanobacteria under Prolonged Pressure due to the Gas Vesicles Collapse. Abeynayaka HDL; Asaeda T; Kaneko Y Environ Manage; 2017 Aug; 60(2):293-303. PubMed ID: 28477239 [TBL] [Abstract][Full Text] [Related]
3. Temporal variation of 2-MIB and geosmin production by Pseudanabaena galeata and Phormidium ambiguum exposed to high-intensity light. Senavirathna MDHJ; Jayasekara MADD Water Environ Res; 2023 Jan; 95(1):e10834. PubMed ID: 36635233 [TBL] [Abstract][Full Text] [Related]
4. Impact of copper sulphate, potassium permanganate, and hydrogen peroxide on Pseudanabaena galeata cell integrity, release and degradation of 2-methylisoborneol. Xu H; Brookes J; Hobson P; Pei H Water Res; 2019 Jun; 157():64-73. PubMed ID: 30953856 [TBL] [Abstract][Full Text] [Related]
5. Analysis of the toxicity and histopathology induced by the oral administration of Pseudanabaena galeata and Geitlerinema splendidum (cyanobacteria) extracts to mice. Rangel M; Martins JC; Garcia AN; Conserva GA; Costa-Neves A; Sant'Anna CL; de Carvalho LR Mar Drugs; 2014 Jan; 12(1):508-24. PubMed ID: 24451192 [TBL] [Abstract][Full Text] [Related]
6. Effect of light quality on the C-phycoerythrin production in marine cyanobacteria Pseudanabaena sp. isolated from Gujarat coast, India. Mishra SK; Shrivastav A; Maurya RR; Patidar SK; Haldar S; Mishra S Protein Expr Purif; 2012 Jan; 81(1):5-10. PubMed ID: 21906679 [TBL] [Abstract][Full Text] [Related]
7. Culture temperature affects gene expression and metabolic pathways in the 2-methylisoborneol-producing cyanobacterium Pseudanabaena galeata. Kakimoto M; Ishikawa T; Miyagi A; Saito K; Miyazaki M; Asaeda T; Yamaguchi M; Uchimiya H; Kawai-Yamada M J Plant Physiol; 2014 Feb; 171(3-4):292-300. PubMed ID: 24140001 [TBL] [Abstract][Full Text] [Related]
8. Acclimation of chlorophyll a and carotenoid levels to different irradiances in four freshwater cyanobacteria. Schagerl M; Müller B J Plant Physiol; 2006 May; 163(7):709-16. PubMed ID: 16325961 [TBL] [Abstract][Full Text] [Related]
9. Fourier transform visible and infrared difference spectroscopy for the study of P700 in photosystem I from Fischerella thermalis PCC 7521 cells grown under white light and far-red light: Evidence that the A Hastings G; Makita H; Agarwala N; Rohani L; Shen G; Bryant DA Biochim Biophys Acta Bioenerg; 2019 Jun; 1860(6):452-460. PubMed ID: 30986391 [TBL] [Abstract][Full Text] [Related]
10. Widespread occurrence and unexpected diversity of red-shifted chlorophyll producing cyanobacteria in humid subtropical forest ecosystems. Zhang ZC; Li ZK; Yin YC; Li Y; Jia Y; Chen M; Qiu BS Environ Microbiol; 2019 Apr; 21(4):1497-1510. PubMed ID: 30838735 [TBL] [Abstract][Full Text] [Related]
11. Genome Mining of Grabski M; Gawor J; Cegłowska M; Gromadka R; Mazur-Marzec H; Węgrzyn G Microorganisms; 2024 Aug; 12(8):. PubMed ID: 39203471 [TBL] [Abstract][Full Text] [Related]
12. Evidence that chlorophyll f functions solely as an antenna pigment in far-red-light photosystem I from Fischerella thermalis PCC 7521. Cherepanov DA; Shelaev IV; Gostev FE; Aybush AV; Mamedov MD; Shen G; Nadtochenko VA; Bryant DA; Semenov AY; Golbeck JH Biochim Biophys Acta Bioenerg; 2020 Jun; 1861(5-6):148184. PubMed ID: 32179058 [TBL] [Abstract][Full Text] [Related]
13. Recoverability of Yan H; Jayasanka Senavirathna MDH Microorganisms; 2023 Nov; 11(11):. PubMed ID: 38004771 [TBL] [Abstract][Full Text] [Related]
14. Some aspects of the ecophysiology of cyanobacteria. Mur LR Ann Microbiol (Paris); 1983; 134B(1):61-72. PubMed ID: 6416128 [TBL] [Abstract][Full Text] [Related]
15. In vivo quality control of photosystem II in cyanobacteria Synechocystis sp. PCC 6803: D1 protein degradation and repair under the influence of light, heat and darkness. Singh M; Satoh K; Yamamoto Y; Kanervo E; Aro EM Indian J Biochem Biophys; 2008 Aug; 45(4):237-43. PubMed ID: 18788473 [TBL] [Abstract][Full Text] [Related]
16. Tolerance of cyanobacteria to the toxicity of BDE-47 and their removal ability. Chalifour A; Tam NF Chemosphere; 2016 Dec; 164():451-461. PubMed ID: 27604061 [TBL] [Abstract][Full Text] [Related]
17. Chlorophyll f-driven photosynthesis in a cavernous cyanobacterium. Behrendt L; Brejnrod A; Schliep M; Sørensen SJ; Larkum AW; Kühl M ISME J; 2015 Sep; 9(9):2108-11. PubMed ID: 25668158 [TBL] [Abstract][Full Text] [Related]
18. Action spectra of chlorophyll a biosynthesis in cyanobacteria: dark-operative protochlorophyllide oxidoreductase-deficient mutants. Gao Y; Xiong W; He MJ; Tang L; Xiang JY; Wu QY Z Naturforsch C J Biosci; 2009; 64(1-2):117-24. PubMed ID: 19323276 [TBL] [Abstract][Full Text] [Related]
19. Energy transfer in the chlorophyll f-containing cyanobacterium, Halomicronema hongdechloris, analyzed by time-resolved fluorescence spectroscopies. Akimoto S; Shinoda T; Chen M; Allakhverdiev SI; Tomo T Photosynth Res; 2015 Aug; 125(1-2):115-22. PubMed ID: 25648637 [TBL] [Abstract][Full Text] [Related]