BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 29779173)

  • 1. Long Lasting High Lysine Diet Aggravates White Matter Injury in Glutaryl-CoA Dehydrogenase Deficient (Gcdh-/-) Mice.
    Olivera-Bravo S; Seminotti B; Isasi E; Ribeiro CA; Leipnitz G; Woontner M; Goodman SI; Souza D; Barbeito L; Wajner M
    Mol Neurobiol; 2019 Jan; 56(1):648-657. PubMed ID: 29779173
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Striatal neuronal death mediated by astrocytes from the Gcdh-/- mouse model of glutaric acidemia type I.
    Olivera-Bravo S; Ribeiro CA; Isasi E; Trías E; Leipnitz G; Díaz-Amarilla P; Woontner M; Beck C; Goodman SI; Souza D; Wajner M; Barbeito L
    Hum Mol Genet; 2015 Aug; 24(16):4504-15. PubMed ID: 25968119
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Acute lysine overload provokes marked striatum injury involving oxidative stress signaling pathways in glutaryl-CoA dehydrogenase deficient mice.
    Amaral AU; Seminotti B; da Silva JC; de Oliveira FH; Ribeiro RT; Leipnitz G; Souza DO; Wajner M
    Neurochem Int; 2019 Oct; 129():104467. PubMed ID: 31121257
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Experimental evidence that bioenergetics disruption is not mainly involved in the brain injury of glutaryl-CoA dehydrogenase deficient mice submitted to lysine overload.
    Amaral AU; Cecatto C; Seminotti B; Ribeiro CA; Lagranha VL; Pereira CC; de Oliveira FH; de Souza DG; Goodman S; Woontner M; Wajner M
    Brain Res; 2015 Sep; 1620():116-29. PubMed ID: 25998543
    [TBL] [Abstract][Full Text] [Related]  

  • 5. l-Carnitine prevents oxidative stress in striatum of glutaryl-CoA dehydrogenase deficient mice submitted to lysine overload.
    Guerreiro G; Amaral AU; Ribeiro RT; Faverzani J; Groehs AC; Sitta A; Deon M; Wajner M; Vargas CR
    Biochim Biophys Acta Mol Basis Dis; 2019 Sep; 1865(9):2420-2427. PubMed ID: 31181292
    [TBL] [Abstract][Full Text] [Related]  

  • 6. White matter injury induced by perinatal exposure to glutaric acid.
    Olivera-Bravo S; Isasi E; Fernández A; Rosillo JC; Jiménez M; Casanova G; Sarlabós MN; Barbeito L
    Neurotox Res; 2014 May; 25(4):381-91. PubMed ID: 24297153
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Disturbance of the glutamatergic system by glutaric acid in striatum and cerebral cortex of glutaryl-CoA dehydrogenase-deficient knockout mice: possible implications for the neuropathology of glutaric acidemia type I.
    Busanello EN; Fernandes CG; Martell RV; Lobato VG; Goodman S; Woontner M; de Souza DO; Wajner M
    J Neurol Sci; 2014 Nov; 346(1-2):260-7. PubMed ID: 25241940
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Impairment of GABAergic system contributes to epileptogenesis in glutaric acidemia type I.
    Vendramin Pasquetti M; Meier L; Loureiro S; Ganzella M; Junges B; Barbieri Caus L; Umpierrez Amaral A; Koeller DM; Goodman S; Woontner M; Gomes de Souza DO; Wajner M; Calcagnotto ME
    Epilepsia; 2017 Oct; 58(10):1771-1781. PubMed ID: 28762469
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Lipopolysaccharide-Elicited Systemic Inflammation Induces Selective Vulnerability of Cerebral Cortex and Striatum of Developing Glutaryl-CoA Dehydrogenase Deficient (Gcdh
    Seminotti B; Amaral AU; Grings M; Ribeiro CAJ; Leipnitz G; Wajner M
    Neurotox Res; 2020 Dec; 38(4):1024-1036. PubMed ID: 33001399
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Disruption of brain redox homeostasis in glutaryl-CoA dehydrogenase deficient mice treated with high dietary lysine supplementation.
    Seminotti B; Amaral AU; da Rosa MS; Fernandes CG; Leipnitz G; Olivera-Bravo S; Barbeito L; Ribeiro CA; de Souza DO; Woontner M; Goodman SI; Koeller DM; Wajner M
    Mol Genet Metab; 2013 Jan; 108(1):30-9. PubMed ID: 23218171
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Induction of Neuroinflammatory Response and Histopathological Alterations Caused by Quinolinic Acid Administration in the Striatum of Glutaryl-CoA Dehydrogenase Deficient Mice.
    Amaral AU; Seminotti B; da Silva JC; de Oliveira FH; Ribeiro RT; Vargas CR; Leipnitz G; Santamaría A; Souza DO; Wajner M
    Neurotox Res; 2018 Apr; 33(3):593-606. PubMed ID: 29235064
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Increased susceptibility to quinolinic acid-induced seizures and long-term changes in brain oscillations in an animal model of glutaric acidemia type I.
    Barbieri Caus L; Pasquetti MV; Seminotti B; Woontner M; Wajner M; Calcagnotto ME
    J Neurosci Res; 2022 Apr; 100(4):992-1007. PubMed ID: 34713466
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multifactorial modulation of susceptibility to l-lysine in an animal model of glutaric aciduria type I.
    Sauer SW; Opp S; Komatsuzaki S; Blank AE; Mittelbronn M; Burgard P; Koeller DM; Okun JG; Kölker S
    Biochim Biophys Acta; 2015 May; 1852(5):768-77. PubMed ID: 25558815
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Oxidative Stress, Disrupted Energy Metabolism, and Altered Signaling Pathways in Glutaryl-CoA Dehydrogenase Knockout Mice: Potential Implications of Quinolinic Acid Toxicity in the Neuropathology of Glutaric Acidemia Type I.
    Seminotti B; Amaral AU; Ribeiro RT; Rodrigues MDN; Colín-González AL; Leipnitz G; Santamaría A; Wajner M
    Mol Neurobiol; 2016 Nov; 53(9):6459-6475. PubMed ID: 26607633
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Elevated glutaric acid levels in Dhtkd1-/Gcdh- double knockout mice challenge our current understanding of lysine metabolism.
    Biagosch C; Ediga RD; Hensler SV; Faerberboeck M; Kuehn R; Wurst W; Meitinger T; Kölker S; Sauer S; Prokisch H
    Biochim Biophys Acta Mol Basis Dis; 2017 Sep; 1863(9):2220-2228. PubMed ID: 28545977
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reduction of Na+, K+-ATPase activity and expression in cerebral cortex of glutaryl-CoA dehydrogenase deficient mice: a possible mechanism for brain injury in glutaric aciduria type I.
    Amaral AU; Seminotti B; Cecatto C; Fernandes CG; Busanello EN; Zanatta Â; Kist LW; Bogo MR; de Souza DO; Woontner M; Goodman S; Koeller DM; Wajner M
    Mol Genet Metab; 2012 Nov; 107(3):375-82. PubMed ID: 22999741
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Induction of oxidative stress in brain of glutaryl-CoA dehydrogenase deficient mice by acute lysine administration.
    Seminotti B; da Rosa MS; Fernandes CG; Amaral AU; Braga LM; Leipnitz G; de Souza DO; Woontner M; Koeller DM; Goodman S; Wajner M
    Mol Genet Metab; 2012 May; 106(1):31-8. PubMed ID: 22445450
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Protective effects of L-carnitine on behavioral alterations and neuroinflammation in striatum of glutaryl-COA dehydrogenase deficient mice.
    Guerreiro G; Faverzani J; Moura AP; Volfart V; Gome Dos Reis B; Sitta A; Gonzalez EA; de Lima Rosa G; Coitinho AS; Baldo G; Wajner M; Vargas CR
    Arch Biochem Biophys; 2021 Sep; 709():108970. PubMed ID: 34181873
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Immunolocalization of glutaryl-CoA dehydrogenase (GCDH) in adult and embryonic rat brain and peripheral tissues.
    Braissant O; Jafari P; Remacle N; Cudré-Cung HP; Do Vale Pereira S; Ballhausen D
    Neuroscience; 2017 Feb; 343():355-363. PubMed ID: 27984186
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A diet-induced mouse model for glutaric aciduria type I.
    Zinnanti WJ; Lazovic J; Wolpert EB; Antonetti DA; Smith MB; Connor JR; Woontner M; Goodman SI; Cheng KC
    Brain; 2006 Apr; 129(Pt 4):899-910. PubMed ID: 16446282
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.