These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
104 related articles for article (PubMed ID: 29779561)
41. Corrigendum to "Effects of acetic acid or sodium acetate infused into the rumen or abomasum on feeding behavior and metabolic response of cows in the postpartum period" (J. Dairy Sci. 101:2016-2026). Gualdrón-Duarte LB; Allen MS J Dairy Sci; 2018 Apr; 101(4):3714. PubMed ID: 29551164 [No Abstract] [Full Text] [Related]
42. Dietary supplementation of Butyrivibrio fibrisolvens alters fatty acids of milk and rumen fluid in lactating goats. Shivani S; Srivastava A; Shandilya UK; Kale V; Tyagi AK J Sci Food Agric; 2016 Mar; 96(5):1716-22. PubMed ID: 26018875 [TBL] [Abstract][Full Text] [Related]
43. Corrigendum to "Relationship of severity of subacute ruminal acidosis to rumen fermentation, chewing activities, sorting behavior, and milk production in lactating dairy cows fed a high-grain diet" (J. Dairy Sci. 97:3006-3016). Gao X; Oba M J Dairy Sci; 2016 May; 99(5):4096. PubMed ID: 27107218 [No Abstract] [Full Text] [Related]
44. Effect of linseed oil and fish oil alone or as an equal mixture on ruminal fatty acid metabolism in growing steers fed maize silage-based diets. Shingfield KJ; Lee MR; Humphries DJ; Scollan ND; Toivonen V; Beever DE; Reynolds CK J Anim Sci; 2011 Nov; 89(11):3728-41. PubMed ID: 21705636 [TBL] [Abstract][Full Text] [Related]
45. Fatty acid profiles associated with microbial colonization of freshly ingested grass and rumen biohydrogenation. Kim EJ; Sanderson R; Dhanoa MS; Dewhurst RJ J Dairy Sci; 2005 Sep; 88(9):3220-30. PubMed ID: 16107412 [TBL] [Abstract][Full Text] [Related]
46. Effects of Heat Treatment of Green Protein on in Situ Protein Disappearance and in Vitro Fatty Acid Biohydrogenation. Chowdhury MR; Lashkari S; Jensen SK; Ambye-Jensen M; Weisbjerg MR J Agric Food Chem; 2018 Aug; 66(30):8169-8178. PubMed ID: 29969263 [TBL] [Abstract][Full Text] [Related]
47. Steady-state rates of linoleic acid biohydrogenation by ruminal bacteria in continuous culture. Fellner V; Sauer FD; Kramer JK J Dairy Sci; 1995 Aug; 78(8):1815-23. PubMed ID: 8786265 [TBL] [Abstract][Full Text] [Related]
48. Corrigendum to "Between-cow variation in digestion and rumen fermentation variables associated with methane production" (J. Dairy Sci. 100:4409-4424). Cabezas-Garcia EH; Krizsan SJ; Shingfield KJ; Huhtanen P J Dairy Sci; 2017 Oct; 100(10):8631. PubMed ID: 28923658 [No Abstract] [Full Text] [Related]
49. Diet-induced milk fat depression is associated with alterations in ruminal biohydrogenation pathways and formation of novel fatty acid intermediates in lactating cows. Ventto L; Leskinen H; Kairenius P; Stefański T; Bayat AR; Vilkki J; Shingfield KJ Br J Nutr; 2017 Feb; 117(3):364-376. PubMed ID: 28236814 [TBL] [Abstract][Full Text] [Related]
50. Does supplemental 18:0 alleviate fish oil-induced milk fat depression in dairy ewes? Toral PG; Hervás G; Carreño D; Frutos P J Dairy Sci; 2016 Feb; 99(2):1133-1144. PubMed ID: 26627853 [TBL] [Abstract][Full Text] [Related]
51. Biohydrogenation of fatty acids is dependent on plant species and feeding regimen of dairy cows. Petersen MB; Jensen SK J Agric Food Chem; 2014 Apr; 62(16):3570-6. PubMed ID: 24665875 [TBL] [Abstract][Full Text] [Related]
52. Efficacy of a novel whey protein gel complex to increase the unsaturated fatty acid composition of bovine milk fat. Carroll SM; DePeters EJ; Rosenberg M J Dairy Sci; 2006 Feb; 89(2):640-50. PubMed ID: 16428634 [TBL] [Abstract][Full Text] [Related]
53. Effect of dietary starch or micro algae supplementation on rumen fermentation and milk fatty acid composition of dairy cows. Boeckaert C; Vlaeminck B; Dijkstra J; Issa-Zacharia A; Van Nespen T; Van Straalen W; Fievez V J Dairy Sci; 2008 Dec; 91(12):4714-27. PubMed ID: 19038948 [TBL] [Abstract][Full Text] [Related]
54. [Biohydrogenation of erucic acid (22:1 n-9 cis) in an "artificial rumen". II) Effect of pH, potential hydrogen donors and type of anaerobiosis]. Borgatti AR; Trigari G Boll Soc Ital Biol Sper; 1979 Feb; 55(3):212-8. PubMed ID: 45245 [TBL] [Abstract][Full Text] [Related]
55. Inhibition of the biohydrogenation of dietary C18 unsaturated fatty acids by rumen bacteria using some inhibitors of methanogenesis. Kemp P; Lander DJ Proc Nutr Soc; 1976 May; 35(1):31A-32A. PubMed ID: 940822 [No Abstract] [Full Text] [Related]
56. Incremental effect of a calcium salt of cis-monounsaturated fatty acids supplement on milk fatty acid composition in cows fed maize silage-based diets. Kliem KE; Reynolds CK; Humphries DJ; Kirkland RM; Barratt CE; Livingstone KM; Givens DI J Dairy Sci; 2013 May; 96(5):3211-21. PubMed ID: 23498010 [TBL] [Abstract][Full Text] [Related]
57. Analysis of alpha-linolenic acid biohydrogenation intermediates in milk fat with emphasis on conjugated linolenic acids. Destaillats F; Trottier JP; Galvez JM; Angers P J Dairy Sci; 2005 Sep; 88(9):3231-9. PubMed ID: 16107413 [TBL] [Abstract][Full Text] [Related]
58. Perspectives on ruminant nutrition and metabolism I. Metabolism in the rumen. Annison EF; Bryden WL Nutr Res Rev; 1998 Dec; 11(2):173-98. PubMed ID: 19094246 [TBL] [Abstract][Full Text] [Related]
59. Dynamic features of the rumen metabolism of linoleic acid, linolenic acid and linseed oil measured in vitro. Jouany JP; Lassalas B; Doreau M; Glasser F Lipids; 2007 Apr; 42(4):351-60. PubMed ID: 17406930 [TBL] [Abstract][Full Text] [Related]
60. Abomasal or ruminal administration of flax oil and hulls on milk production, digestibility, and milk fatty acid profile of dairy cows. Kazama R; Côrtes C; da Silva-Kazama D; Gagnon N; Benchaar C; Zeoula LM; Santos GT; Petit HV J Dairy Sci; 2010 Oct; 93(10):4781-90. PubMed ID: 20855012 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]