These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
333 related articles for article (PubMed ID: 29779651)
1. The Biochemistry and Structural Biology of Cyanobactin Pathways: Enabling Combinatorial Biosynthesis. Gu W; Dong SH; Sarkar S; Nair SK; Schmidt EW Methods Enzymol; 2018; 604():113-163. PubMed ID: 29779651 [TBL] [Abstract][Full Text] [Related]
2. Directing Biosynthesis: Practical Supply of Natural and Unnatural Cyanobactins. Sardar D; Tianero MD; Schmidt EW Methods Enzymol; 2016; 575():1-20. PubMed ID: 27417922 [TBL] [Abstract][Full Text] [Related]
3. Genome-Mining-Based Discovery of the Cyclic Peptide Tolypamide and TolF, a Ser/Thr Forward O-Prenyltransferase. Purushothaman M; Sarkar S; Morita M; Gugger M; Schmidt EW; Morinaka BI Angew Chem Int Ed Engl; 2021 Apr; 60(15):8460-8465. PubMed ID: 33586286 [TBL] [Abstract][Full Text] [Related]
4. Three Principles of Diversity-Generating Biosynthesis. Gu W; Schmidt EW Acc Chem Res; 2017 Oct; 50(10):2569-2576. PubMed ID: 28891639 [TBL] [Abstract][Full Text] [Related]
5. Roads to Rome: Role of Multiple Cassettes in Cyanobactin RiPP Biosynthesis. Gu W; Sardar D; Pierce E; Schmidt EW J Am Chem Soc; 2018 Nov; 140(47):16213-16221. PubMed ID: 30387998 [TBL] [Abstract][Full Text] [Related]
6. N-Prenylation of Tryptophan by an Aromatic Prenyltransferase from the Cyanobactin Biosynthetic Pathway. Dalponte L; Parajuli A; Younger E; Mattila A; Jokela J; Wahlsten M; Leikoski N; Sivonen K; Jarmusch SA; Houssen WE; Fewer DP Biochemistry; 2018 Dec; 57(50):6860-6867. PubMed ID: 30452235 [TBL] [Abstract][Full Text] [Related]
7. Discovery, biochemical characterization, and bioengineering of cyanobactin prenyltransferases. Zhang Y; Goto Y; Suga H Trends Biochem Sci; 2023 Apr; 48(4):360-374. PubMed ID: 36564250 [TBL] [Abstract][Full Text] [Related]
8. Modularity of RiPP Enzymes Enables Designed Synthesis of Decorated Peptides. Sardar D; Lin Z; Schmidt EW Chem Biol; 2015 Jul; 22(7):907-16. PubMed ID: 26165156 [TBL] [Abstract][Full Text] [Related]
9. Biochemical characterization of a cyanobactin arginine- Clemente C; Johnson N; Ouyang X; Popin RV; Dall'Angelo S; Wahlsten M; Jokela J; Colombano A; Nardone B; Fewer DP; Houssen WE Chem Commun (Camb); 2022 Oct; 58(86):12054-12057. PubMed ID: 36193595 [TBL] [Abstract][Full Text] [Related]
10. The structural biology of patellamide biosynthesis. Koehnke J; Bent AF; Houssen WE; Mann G; Jaspars M; Naismith JH Curr Opin Struct Biol; 2014 Dec; 29():112-121. PubMed ID: 25460274 [TBL] [Abstract][Full Text] [Related]
11. Recognition sequences and substrate evolution in cyanobactin biosynthesis. Sardar D; Pierce E; McIntosh JA; Schmidt EW ACS Synth Biol; 2015 Feb; 4(2):167-76. PubMed ID: 24625112 [TBL] [Abstract][Full Text] [Related]
12. Assessing the combinatorial potential of the RiPP cyanobactin tru pathway. Ruffner DE; Schmidt EW; Heemstra JR ACS Synth Biol; 2015 Apr; 4(4):482-92. PubMed ID: 25140729 [TBL] [Abstract][Full Text] [Related]
13. Enzymatic N- and C-Protection in Cyanobactin RiPP Natural Products. Sardar D; Hao Y; Lin Z; Morita M; Nair SK; Schmidt EW J Am Chem Soc; 2017 Mar; 139(8):2884-2887. PubMed ID: 28195477 [TBL] [Abstract][Full Text] [Related]
14. New Insights into the Biosynthetic Logic of Ribosomally Synthesized and Post-translationally Modified Peptide Natural Products. Ortega MA; van der Donk WA Cell Chem Biol; 2016 Jan; 23(1):31-44. PubMed ID: 26933734 [TBL] [Abstract][Full Text] [Related]
15. Post-Translational Tyrosine Geranylation in Cyanobactin Biosynthesis. Morita M; Hao Y; Jokela JK; Sardar D; Lin Z; Sivonen K; Nair SK; Schmidt EW J Am Chem Soc; 2018 May; 140(19):6044-6048. PubMed ID: 29701961 [TBL] [Abstract][Full Text] [Related]
17. Biosynthesis of the Bis-Prenylated Alkaloids Muscoride A and B. Mattila A; Andsten RM; Jumppanen M; Assante M; Jokela J; Wahlsten M; Mikula KM; Sigindere C; Kwak DH; Gugger M; Koskela H; Sivonen K; Liu X; Yli-Kauhaluoma J; Iwaï H; Fewer DP ACS Chem Biol; 2019 Dec; 14(12):2683-2690. PubMed ID: 31674754 [TBL] [Abstract][Full Text] [Related]
18. An efficient method for the in vitro production of azol(in)e-based cyclic peptides. Houssen WE; Bent AF; McEwan AR; Pieiller N; Tabudravu J; Koehnke J; Mann G; Adaba RI; Thomas L; Hawas UW; Liu H; Schwarz-Linek U; Smith MC; Naismith JH; Jaspars M Angew Chem Int Ed Engl; 2014 Dec; 53(51):14171-4. PubMed ID: 25331823 [TBL] [Abstract][Full Text] [Related]
19. The expanding spectrum of diketopiperazine natural product biosynthetic pathways containing cyclodipeptide synthases. Borgman P; Lopez RD; Lane AL Org Biomol Chem; 2019 Feb; 17(9):2305-2314. PubMed ID: 30688950 [TBL] [Abstract][Full Text] [Related]
20. Biosynthetic Proteases That Catalyze the Macrocyclization of Ribosomally Synthesized Linear Peptides. Ongpipattanakul C; Nair SK Biochemistry; 2018 Jun; 57(23):3201-3209. PubMed ID: 29553721 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]