These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Metagenomic Analysis of the Sponge Discodermia Reveals the Production of the Cyanobacterial Natural Product Kasumigamide by 'Entotheonella'. Nakashima Y; Egami Y; Kimura M; Wakimoto T; Abe I PLoS One; 2016; 11(10):e0164468. PubMed ID: 27732651 [TBL] [Abstract][Full Text] [Related]
4. Single-bacterial genomics validates rich and varied specialized metabolism of uncultivated Mori T; Cahn JKB; Wilson MC; Meoded RA; Wiebach V; Martinez AFC; Helfrich EJN; Albersmeier A; Wibberg D; Dätwyler S; Keren R; Lavy A; Rückert C; Ilan M; Kalinowski J; Matsunaga S; Takeyama H; Piel J Proc Natl Acad Sci U S A; 2018 Feb; 115(8):1718-1723. PubMed ID: 29439203 [TBL] [Abstract][Full Text] [Related]
5. Insights into the lifestyle of uncultured bacterial natural product factories associated with marine sponges. Lackner G; Peters EE; Helfrich EJ; Piel J Proc Natl Acad Sci U S A; 2017 Jan; 114(3):E347-E356. PubMed ID: 28049838 [TBL] [Abstract][Full Text] [Related]
6. The Use of ClusterMine360 for the Analysis of Polyketide and Nonribosomal Peptide Biosynthetic Pathways. Tremblay N; Hill P; Conway KR; Boddy CN Methods Mol Biol; 2016; 1401():233-52. PubMed ID: 26831712 [TBL] [Abstract][Full Text] [Related]
7. Metagenomic Insights Reveal Unrecognized Diversity of Entotheonella in Japanese Theonella Sponges. Yamabe S; Yoshitake K; Ninomiya A; Piel J; Takeyama H; Matsunaga S; Takada K Mar Biotechnol (NY); 2024 Oct; 26(5):1009-1016. PubMed ID: 39103714 [TBL] [Abstract][Full Text] [Related]
8. Mining metagenomic data to gain a new insight into the gut microbial biosynthetic potential in placental mammals. Hu D; Zhang T; He S; Pu T; Yin Y; Hu Y Microbiol Spectr; 2024 Oct; 12(10):e0086424. PubMed ID: 39162518 [TBL] [Abstract][Full Text] [Related]
9. Metagenomic approaches for exploiting uncultivated bacteria as a resource for novel biosynthetic enzymology. Wilson MC; Piel J Chem Biol; 2013 May; 20(5):636-47. PubMed ID: 23706630 [TBL] [Abstract][Full Text] [Related]
10. Calyculin biogenesis from a pyrophosphate protoxin produced by a sponge symbiont. Wakimoto T; Egami Y; Nakashima Y; Wakimoto Y; Mori T; Awakawa T; Ito T; Kenmoku H; Asakawa Y; Piel J; Abe I Nat Chem Biol; 2014 Aug; 10(8):648-55. PubMed ID: 24974231 [TBL] [Abstract][Full Text] [Related]
11. Comparative Metagenomic Analysis of Biosynthetic Diversity across Sponge Microbiomes Highlights Metabolic Novelty, Conservation, and Diversification. Loureiro C; Galani A; Gavriilidou A; Chaib de Mares M; van der Oost J; Medema MH; Sipkema D mSystems; 2022 Aug; 7(4):e0035722. PubMed ID: 35862823 [TBL] [Abstract][Full Text] [Related]
12. Metabolic and evolutionary origin of actin-binding polyketides from diverse organisms. Ueoka R; Uria AR; Reiter S; Mori T; Karbaum P; Peters EE; Helfrich EJ; Morinaka BI; Gugger M; Takeyama H; Matsunaga S; Piel J Nat Chem Biol; 2015 Sep; 11(9):705-12. PubMed ID: 26236936 [TBL] [Abstract][Full Text] [Related]
13. Microsclerodermins from terrestrial myxobacteria: an intriguing biosynthesis likely connected to a sponge symbiont. Hoffmann T; Müller S; Nadmid S; Garcia R; Müller R J Am Chem Soc; 2013 Nov; 135(45):16904-11. PubMed ID: 24124771 [TBL] [Abstract][Full Text] [Related]
14. Polyketide synthases of bacterial symbionts in sponges--evolution-based applications in natural products research. Hochmuth T; Piel J Phytochemistry; 2009; 70(15-16):1841-9. PubMed ID: 19443000 [TBL] [Abstract][Full Text] [Related]
15. Characterization of an Orphan Type III Polyketide Synthase Conserved in Uncultivated "Entotheonella" Sponge Symbionts. Reiter S; Cahn JKB; Wiebach V; Ueoka R; Piel J Chembiochem; 2020 Feb; 21(4):564-571. PubMed ID: 31430416 [TBL] [Abstract][Full Text] [Related]
16. Metagenomic approaches to identify and isolate bioactive natural products from microbiota of marine sponges. Gurgui C; Piel J Methods Mol Biol; 2010; 668():247-64. PubMed ID: 20830569 [TBL] [Abstract][Full Text] [Related]
17. The Swinholide Biosynthesis Gene Cluster from a Terrestrial Cyanobacterium, Nostoc sp. Strain UHCC 0450. Humisto A; Jokela J; Liu L; Wahlsten M; Wang H; Permi P; Machado JP; Antunes A; Fewer DP; Sivonen K Appl Environ Microbiol; 2018 Feb; 84(3):. PubMed ID: 29150506 [TBL] [Abstract][Full Text] [Related]
18. An environmental bacterial taxon with a large and distinct metabolic repertoire. Wilson MC; Mori T; Rückert C; Uria AR; Helf MJ; Takada K; Gernert C; Steffens UA; Heycke N; Schmitt S; Rinke C; Helfrich EJ; Brachmann AO; Gurgui C; Wakimoto T; Kracht M; Crüsemann M; Hentschel U; Abe I; Matsunaga S; Kalinowski J; Takeyama H; Piel J Nature; 2014 Feb; 506(7486):58-62. PubMed ID: 24476823 [TBL] [Abstract][Full Text] [Related]
19. Comparative Genomics of Cyanobacterial Symbionts Reveals Distinct, Specialized Metabolism in Tropical Schorn MA; Jordan PA; Podell S; Blanton JM; Agarwal V; Biggs JS; Allen EE; Moore BS mBio; 2019 May; 10(3):. PubMed ID: 31088928 [TBL] [Abstract][Full Text] [Related]