BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 29780041)

  • 1. Discrimination between Normal and Cancerous Cells from Dynamic Viscoelastic Properties with a Laser-induced Surface Deformation Microscope.
    Morisaku T; Ishihara M; Yui H
    Anal Sci; 2018 Aug; 34(8):979-982. PubMed ID: 29780041
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Laser-induced surface deformation microscope for the study of the dynamic viscoelasticity of plasma membrane in a living cell.
    Morisaku T; Yui H
    Analyst; 2018 May; 143(10):2397-2404. PubMed ID: 29700531
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development of a Near-infrared Laser-induced Surface Deformation Microscope and Its Application to the Dynamic Viscoelastic Measurements of Single Living Plant Cell Surfaces.
    Morisaku T; Onuki H; Hashimoto K; Kuchitsu K; Yui H
    Anal Sci; 2019 Nov; 35(11):1203-1207. PubMed ID: 31308300
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechanical Properties of the Coat Protein Layer and Cortex in Single Bacillus subtilis Spores Studied with an Atomic Force Microscope and Laser-induced Surface Deformation Microscope.
    Morisaku T; Kido Y; Asai K; Yui H
    Anal Sci; 2019 Jan; 35(1):45-48. PubMed ID: 30416169
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Viscoelastic properties of normal and cancerous human breast cells are affected differently by contact to adjacent cells.
    Schierbaum N; Rheinlaender J; Schäffer TE
    Acta Biomater; 2017 Jun; 55():239-248. PubMed ID: 28396292
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Local measurements of viscoelastic parameters of adherent cell surfaces by magnetic bead microrheometry.
    Bausch AR; Ziemann F; Boulbitch AA; Jacobson K; Sackmann E
    Biophys J; 1998 Oct; 75(4):2038-49. PubMed ID: 9746546
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Prestress and Area Compressibility of Actin Cortices Determine the Viscoelastic Response of Living Cells.
    Cordes A; Witt H; Gallemí-Pérez A; Brückner B; Grimm F; Vache M; Oswald T; Bodenschatz J; Flormann D; Lautenschläger F; Tarantola M; Janshoff A
    Phys Rev Lett; 2020 Aug; 125(6):068101. PubMed ID: 32845697
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Viscoelastic Properties of Confluent MDCK II Cells Obtained from Force Cycle Experiments.
    Brückner BR; Nöding H; Janshoff A
    Biophys J; 2017 Feb; 112(4):724-735. PubMed ID: 28256232
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Double power-law viscoelastic relaxation of living cells encodes motility trends.
    de Sousa JS; Freire RS; Sousa FD; Radmacher M; Silva AFB; Ramos MV; Monteiro-Moreira ACO; Mesquita FP; Moraes MEA; Montenegro RC; Oliveira CLN
    Sci Rep; 2020 Mar; 10(1):4749. PubMed ID: 32179816
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Atomic force microscopy studies on cellular elastic and viscoelastic properties.
    Li M; Liu L; Xi N; Wang Y
    Sci China Life Sci; 2018 Jan; 61(1):57-67. PubMed ID: 28667516
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Probing the viscoelastic behavior of cultured airway smooth muscle cells with atomic force microscopy: stiffening induced by contractile agonist.
    Smith BA; Tolloczko B; Martin JG; Grütter P
    Biophys J; 2005 Apr; 88(4):2994-3007. PubMed ID: 15665124
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Single-cell mechanical assay unveils viscoelastic similarities in normal and neoplastic brain cells.
    Onwudiwe K; Najera J; Holen L; Burchett AA; Rodriguez D; Zarodniuk M; Siri S; Datta M
    Biophys J; 2024 May; 123(9):1098-1105. PubMed ID: 38544410
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Measurement of local strain on cell membrane at initiation point of calcium signaling response to applied mechanical stimulus in osteoblastic cells.
    Sato K; Adachi T; Ueda D; Hojo M; Tomita Y
    J Biomech; 2007; 40(6):1246-55. PubMed ID: 16887125
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantitative analysis of the viscoelastic properties of thin regions of fibroblasts using atomic force microscopy.
    Mahaffy RE; Park S; Gerde E; Käs J; Shih CK
    Biophys J; 2004 Mar; 86(3):1777-93. PubMed ID: 14990504
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A master relation defines the nonlinear viscoelasticity of single fibroblasts.
    Fernández P; Pullarkat PA; Ott A
    Biophys J; 2006 May; 90(10):3796-805. PubMed ID: 16461394
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rheology of rounded mammalian cells over continuous high-frequencies.
    Fläschner G; Roman CI; Strohmeyer N; Martinez-Martin D; Müller DJ
    Nat Commun; 2021 May; 12(1):2922. PubMed ID: 34006873
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An investigation of the viscoelastic behavior of MCF-10A and MCF-7 cells.
    Heydarian A; Milani D; Moein Fatemi SM
    Biochem Biophys Res Commun; 2020 Aug; 529(2):432-436. PubMed ID: 32703447
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A viscoelastic analysis of the P56 mouse brain under large-deformation dynamic indentation.
    MacManus DB; Pierrat B; Murphy JG; Gilchrist MD
    Acta Biomater; 2017 Jan; 48():309-318. PubMed ID: 27777117
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of pigments on dynamic mechanical properties of a maxillofacial prosthetic elastomer.
    Hu X; Pan X; Johnston WM
    J Prosthet Dent; 2014 Nov; 112(5):1298-303. PubMed ID: 24836534
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dynamics of two-component membranes surrounded by viscoelastic media.
    Komura S; Yasuda K; Okamoto R
    J Phys Condens Matter; 2015 Nov; 27(43):432001. PubMed ID: 26448393
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.