These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
92 related articles for article (PubMed ID: 2978009)
1. The internal dynamics of gene 32 protein-DNA complexes studied by quasi-elastic light scattering. Kuil ME; van Mourik F; Burger W; van Grondelle R Biophys Chem; 1988 Dec; 32(2-3):211-27. PubMed ID: 2978009 [TBL] [Abstract][Full Text] [Related]
2. Hydrodynamic studies of a DNA-protein complex. Dimensions of the complex of single-stranded 145 base DNA with gene 32 protein of phage T4 deduced from quasi-elastic light scattering. Scheerhagen MA; Kuil ME; van Grondelle R; Blok J FEBS Lett; 1985 May; 184(2):221-5. PubMed ID: 3873355 [TBL] [Abstract][Full Text] [Related]
3. A refined calculation of the solution dimensions of the complex between gene 32 protein and single stranded DNA based on estimates of the bending persistence length. Kuil ME; van der Oord CJ; Vlaanderen CA; van Haeringen B; van Grondelle R J Biomol Struct Dyn; 1990 Feb; 7(4):943-57. PubMed ID: 2310524 [TBL] [Abstract][Full Text] [Related]
4. On the thermodynamics and kinetics of the cooperative binding of bacteriophage T4-coded gene 32 (helix destabilizing) protein to nucleic acid lattices. Kowalczykowski SC; Lonberg N; Newport JW; Paul LS; von Hippel PH Biophys J; 1980 Oct; 32(1):403-18. PubMed ID: 6264988 [TBL] [Abstract][Full Text] [Related]
5. Binding stoichiometry of the gene 32 protein of phage T4 in the complex with single stranded DNA deduced from boundary sedimentation. Scheerhagen MA; Vlaanderen CA; Blok J; van Grondelle R J Biomol Struct Dyn; 1986 Apr; 3(5):887-98. PubMed ID: 3271416 [TBL] [Abstract][Full Text] [Related]
6. Kinetics of head-tail joining in bacteriophage T4D studied by quasi-elastic light scattering: effects of temperature, pH, and ionic strength. Aksiyote-Benbasat J; Bloomfield VA Biochemistry; 1981 Aug; 20(17):5018-25. PubMed ID: 7028099 [No Abstract] [Full Text] [Related]
7. Structure calculations for single-stranded DNA complexed with the single-stranded DNA binding protein GP32 of bacteriophage T4: a remarkable DNA structure. van Amerongen H; Kuil ME; Scheerhagen MA; van Grondelle R Biochemistry; 1990 Jun; 29(23):5619-25. PubMed ID: 2386789 [TBL] [Abstract][Full Text] [Related]
8. A specific model for the conformation of single-stranded polynucleotides in complex with the helix-destabilizing protein GP32 of bacteriophage T4. Scheerhagen MA; Bokma JT; Vlaanderen CA; Blok J; van Grondelle R Biopolymers; 1986 Aug; 25(8):1419-48. PubMed ID: 3017469 [No Abstract] [Full Text] [Related]
9. Photochemical crosslinking of bacteriophage T4 single-stranded DNA-binding protein (gp32) to oligo-p(dT)8: identification of phenylalanine-183 as the site of crosslinking. Shamoo Y; Williams KR; Konigsberg WH Proteins; 1988; 4(1):1-6. PubMed ID: 3186689 [TBL] [Abstract][Full Text] [Related]
10. Formation of D loops by the UvsX protein of T4 bacteriophage: a comparison of the reaction catalyzed in the presence or absence of gene 32 protein. Harris LD; Griffith JD Biochemistry; 1988 Sep; 27(18):6954-9. PubMed ID: 2973808 [TBL] [Abstract][Full Text] [Related]
11. Structure and dynamics of the complex of single stranded DNA binding protein of Escherichia coli with circular single stranded DNA of filamentous phages. Schaper A; Urbanke C; Kohring GW; Maass G J Biomol Struct Dyn; 1991 Jun; 8(6):1233-50. PubMed ID: 1892584 [TBL] [Abstract][Full Text] [Related]
12. Helicase assembly protein Gp59 of bacteriophage T4: fluorescence anisotropy and sedimentation studies of complexes formed with derivatives of Gp32, the phage ssDNA binding protein. Xu H; Wang Y; Bleuit JS; Morrical SW Biochemistry; 2001 Jun; 40(25):7651-61. PubMed ID: 11412119 [TBL] [Abstract][Full Text] [Related]
13. A model for the complex between the helix destabilizing protein GP32 of bacteriophage T4 and single-stranded DNA. Scheerhagen MA; Kuil ME; van Amerongen H; van Grondelle R J Biomol Struct Dyn; 1989 Feb; 6(4):701-6. PubMed ID: 2559746 [TBL] [Abstract][Full Text] [Related]
14. Intramolecular interference effects in dynamic light scattering: rigid double spirals and superhelical DNAs. Wu PG; Song L; Schurr JM Biopolymers; 1990 Jul-Aug 5; 29(8-9):1211-32. PubMed ID: 2164427 [TBL] [Abstract][Full Text] [Related]
15. Site-specific mutagenesis of T4 gene 32: the role of tyrosine residues in protein-nucleic acid interactions. Shamoo Y; Ghosaini LR; Keating KM; Williams KR; Sturtevant JM; Konigsberg WH Biochemistry; 1989 Sep; 28(18):7409-17. PubMed ID: 2684276 [TBL] [Abstract][Full Text] [Related]
16. Models for the binary complex of bacteriophage T4 gp59 helicase loading protein: gp32 single-stranded DNA-BINDING protein and ternary complex with pseudo-Y junction DNA. Hinerman JM; Dignam JD; Mueser TC J Biol Chem; 2012 May; 287(22):18608-17. PubMed ID: 22493434 [TBL] [Abstract][Full Text] [Related]
17. The conformation of the complex of the helix destabilizing protein GP32 of bacteriophage T4 and single stranded DNA. Scheerhagen MA; Blok J; van Grondelle R J Biomol Struct Dyn; 1985 Feb; 2(4):821-9. PubMed ID: 2856021 [TBL] [Abstract][Full Text] [Related]
18. Protein-protein interactions with the acidic COOH terminus of the single-stranded DNA-binding protein of the bacteriophage T4. Krassa KB; Green LS; Gold L Proc Natl Acad Sci U S A; 1991 May; 88(9):4010-4. PubMed ID: 2023949 [TBL] [Abstract][Full Text] [Related]
19. Dynamic light scattering from weakly bending rods: estimation of the dynamic bending rigidity of the M13 virus. Song L; Kim US; Wilcoxon J; Schurr JM Biopolymers; 1991 Apr; 31(5):547-67. PubMed ID: 1868169 [TBL] [Abstract][Full Text] [Related]
20. [Study of the conformational and intradynamic changes of phage lambda DNA molecules by laser correlation spectroscopy]. Arutiunian AV; Ivanova MA; Kurliand DI; Noskin VA Mol Biol (Mosk); 1993; 27(5):1139-49. PubMed ID: 8246936 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]