These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 29780289)

  • 1. Physics Models of Plasmonics: Single Nanoparticle, Complex Single Nanoparticle, Nanodimer, and Single Nanoparticle over Metallic Thin Film.
    Li W
    Plasmonics; 2018; 13(3):997-1014. PubMed ID: 29780289
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Distinguishable Plasmonic Nanoparticle and Gap Mode Properties in a Silver Nanoparticle on a Gold Film System Using Three-Dimensional FDTD Simulations.
    Devaraj V; Lee JM; Oh JW
    Nanomaterials (Basel); 2018 Jul; 8(8):. PubMed ID: 30061493
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Active quantum plasmonics.
    Marinica DC; Zapata M; Nordlander P; Kazansky AK; M Echenique P; Aizpurua J; Borisov AG
    Sci Adv; 2015 Dec; 1(11):e1501095. PubMed ID: 26824066
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Projected Dipole Model for Quantum Plasmonics.
    Yan W; Wubs M; Asger Mortensen N
    Phys Rev Lett; 2015 Sep; 115(13):137403. PubMed ID: 26451583
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Atomistic electrodynamics simulations of bare and ligand-coated nanoparticles in the quantum size regime.
    Chen X; Moore JE; Zekarias M; Jensen L
    Nat Commun; 2015 Nov; 6():8921. PubMed ID: 26555179
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optically Thin Metallic Films for High-Radiative-Efficiency Plasmonics.
    Yang Y; Zhen B; Hsu CW; Miller OD; Joannopoulos JD; Soljačić M
    Nano Lett; 2016 Jul; 16(7):4110-7. PubMed ID: 27244596
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pronounced Linewidth Narrowing of an Aluminum Nanoparticle Plasmon Resonance by Interaction with an Aluminum Metallic Film.
    Sobhani A; Manjavacas A; Cao Y; McClain MJ; García de Abajo FJ; Nordlander P; Halas NJ
    Nano Lett; 2015 Oct; 15(10):6946-51. PubMed ID: 26383818
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Using the thickness of graphene to template lateral subnanometer gaps between gold nanostructures.
    Zaretski AV; Marin BC; Moetazedi H; Dill TJ; Jibril L; Kong C; Tao AR; Lipomi DJ
    Nano Lett; 2015 Jan; 15(1):635-40. PubMed ID: 25555061
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bridging quantum and classical plasmonics with a quantum-corrected model.
    Esteban R; Borisov AG; Nordlander P; Aizpurua J
    Nat Commun; 2012 May; 3():825. PubMed ID: 22569369
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A hybrid atomistic electrodynamics-quantum mechanical approach for simulating surface-enhanced Raman scattering.
    Payton JL; Morton SM; Moore JE; Jensen L
    Acc Chem Res; 2014 Jan; 47(1):88-99. PubMed ID: 23965411
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Anomalously Large Spectral Shifts near the Quantum Tunnelling Limit in Plasmonic Rulers with Subatomic Resolution.
    Readman C; de Nijs B; Szabó I; Demetriadou A; Greenhalgh R; Durkan C; Rosta E; Scherman OA; Baumberg JJ
    Nano Lett; 2019 Mar; 19(3):2051-2058. PubMed ID: 30726095
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nanoparticle plasmonics for 2D-photovoltaics: mechanisms, optimization, and limits.
    Hägglund C; Kasemo B
    Opt Express; 2009 Jul; 17(14):11944-57. PubMed ID: 19582109
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Continuous fabrication of microcapsules with controllable metal covered nanoparticle arrays using droplet microfluidics for localized surface plasmon resonance.
    Wang J; Jin M; Gong Y; Li H; Wu S; Zhang Z; Zhou G; Shui L; Eijkel JCT; van den Berg A
    Lab Chip; 2017 May; 17(11):1970-1979. PubMed ID: 28470325
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An eigenvalue approach to quantum plasmonics based on a self-consistent hydrodynamics method.
    Ding K; Chan CT
    J Phys Condens Matter; 2018 Feb; 30(8):084007. PubMed ID: 29283109
    [TBL] [Abstract][Full Text] [Related]  

  • 15. "Hot" electrons in metallic nanostructures-non-thermal carriers or heating?
    Dubi Y; Sivan Y
    Light Sci Appl; 2019; 8():89. PubMed ID: 31645933
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Design and Analysis of a Ag Rhombus Nanoparticle Film-Coupled Plasmonic Nanostructure.
    Chen LS; Wang ZY; Bai RY; Wang Y; Wang X
    ACS Omega; 2019 Sep; 4(12):14759-14764. PubMed ID: 31552314
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantum electrodynamics and plasmonic resonance of metallic nanostructures.
    Zhang M; Xiang H; Zhang X; Lu G
    J Phys Condens Matter; 2016 Apr; 28(15):155302. PubMed ID: 26987436
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Self-aligned deterministic coupling of single quantum emitter to nanofocused plasmonic modes.
    Gong SH; Kim JH; Ko YH; Rodriguez C; Shin J; Lee YH; Dang le S; Zhang X; Cho YH
    Proc Natl Acad Sci U S A; 2015 Apr; 112(17):5280-5. PubMed ID: 25870303
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Single-Crystalline Aluminum Nanostructures on a Semiconducting GaAs Substrate for Ultraviolet to Near-Infrared Plasmonics.
    Liu HW; Lin FC; Lin SW; Wu JY; Chou BT; Lai KJ; Lin SD; Huang JS
    ACS Nano; 2015 Apr; 9(4):3875-86. PubMed ID: 25848830
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An Accessible Integrated Nanoparticle in a Metallic Hole Structure for Efficient Plasmonic Applications.
    Devaraj V; Choi JW; Lee JM; Oh JW
    Materials (Basel); 2022 Jan; 15(3):. PubMed ID: 35160740
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.