These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 29780289)

  • 21. Quantum plasmonics with quantum dot-metal nanoparticle molecules: influence of the Fano effect on photon statistics.
    Ridolfo A; Di Stefano O; Fina N; Saija R; Savasta S
    Phys Rev Lett; 2010 Dec; 105(26):263601. PubMed ID: 21231659
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Complex-Morphology Metal-Based Nanostructures: Fabrication, Characterization, and Applications.
    Gentile A; Ruffino F; Grimaldi MG
    Nanomaterials (Basel); 2016 Jun; 6(6):. PubMed ID: 28335236
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Study of plasmonics in hybrids made from a quantum emitter and double metallic nanoshell dimer.
    Guo J; Black K; Hu J; Singh M
    J Phys Condens Matter; 2018 May; 30(18):185301. PubMed ID: 29546847
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Plasmonic Colour Printing by Light Trapping in Two-Metal Nanostructures.
    Wilson K; Marocico CA; Pedrueza-Villalmanzo E; Smith C; Hrelescu C; Bradley AL
    Nanomaterials (Basel); 2019 Jul; 9(7):. PubMed ID: 31266205
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Hot carrier creation in a nanoparticle dimer-molecule composite.
    Mokkath JH
    Phys Chem Chem Phys; 2024 May; 26(20):14796-14807. PubMed ID: 38717785
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Metallic Nanostructures Based on DNA Nanoshapes.
    Shen B; Tapio K; Linko V; Kostiainen MA; Toppari JJ
    Nanomaterials (Basel); 2016 Aug; 6(8):. PubMed ID: 28335274
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Quantum plasmonics: optical properties and tunability of metallic nanorods.
    Zuloaga J; Prodan E; Nordlander P
    ACS Nano; 2010 Sep; 4(9):5269-76. PubMed ID: 20698558
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Quantum mechanical limit to plasmonic enhancement as observed by surface-enhanced Raman scattering.
    Zhu W; Crozier KB
    Nat Commun; 2014 Oct; 5():5228. PubMed ID: 25311008
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Less is More: Improved Thermal Stability and Plasmonic Response in Au Films via the Use of SubNanometer Ti Adhesion Layers.
    Abbott WM; Murray CP; Zhong C; Smith C; McGuinness C; Rezvani E; Downing C; Daly D; Petford-Long AK; Bello F; McCloskey D; Donegan JF
    ACS Appl Mater Interfaces; 2019 Feb; 11(7):7607-7614. PubMed ID: 30682242
    [TBL] [Abstract][Full Text] [Related]  

  • 30. How To Identify Plasmons from the Optical Response of Nanostructures.
    Zhang R; Bursi L; Cox JD; Cui Y; Krauter CM; Alabastri A; Manjavacas A; Calzolari A; Corni S; Molinari E; Carter EA; García de Abajo FJ; Zhang H; Nordlander P
    ACS Nano; 2017 Jul; 11(7):7321-7335. PubMed ID: 28651057
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A generalized non-local optical response theory for plasmonic nanostructures.
    Mortensen NA; Raza S; Wubs M; Søndergaard T; Bozhevolnyi SI
    Nat Commun; 2014 May; 5():3809. PubMed ID: 24787630
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Efficient hybrid plasmonic polymer solar cells with Ag nanoparticle decorated TiO2 nanorods embedded in the active layer.
    Liu K; Bi Y; Qu S; Tan F; Chi D; Lu S; Li Y; Kou Y; Wang Z
    Nanoscale; 2014 Jun; 6(11):6180-6. PubMed ID: 24796321
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Dressed states of a quantum emitter strongly coupled to a metal nanoparticle.
    Varguet H; Rousseaux B; Dzsotjan D; Jauslin HR; Guérin S; Colas des Francs G
    Opt Lett; 2016 Oct; 41(19):4480-4483. PubMed ID: 27749860
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Terahertz Quantum Plasmonics of Nanoslot Antennas in Nonlinear Regime.
    Kim JY; Kang BJ; Park J; Bahk YM; Kim WT; Rhie J; Jeon H; Rotermund F; Kim DS
    Nano Lett; 2015 Oct; 15(10):6683-8. PubMed ID: 26372787
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Graphene plasmonics for tuning photon decay rate near metallic split-ring resonator in a multilayered substrate.
    Chen YP; Sha WE; Jiang L; Hu J
    Opt Express; 2015 Feb; 23(3):2798-807. PubMed ID: 25836140
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Subnanometer imaging and controlled dynamical patterning of thermocapillary driven deformation of thin liquid films.
    Rubin S; Hong B; Fainman Y
    Light Sci Appl; 2019; 8():77. PubMed ID: 31645923
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Enhancement of optical absorption in thin-film solar cells through the excitation of higher-order nanoparticle plasmon modes.
    Akimov YA; Koh WS; Ostrikov K
    Opt Express; 2009 Jun; 17(12):10195-205. PubMed ID: 19506674
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Quantum Mechanical Description of Raman Scattering from Molecules in Plasmonic Cavities.
    Schmidt MK; Esteban R; González-Tudela A; Giedke G; Aizpurua J
    ACS Nano; 2016 Jun; 10(6):6291-8. PubMed ID: 27203727
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Substrate Oxide Layer Thickness Optimization for a Dual-Width Plasmonic Grating for Surface-Enhanced Raman Spectroscopy (SERS) Biosensor Applications.
    Bauman SJ; Brawley ZT; Darweesh AA; Herzog JB
    Sensors (Basel); 2017 Jun; 17(7):. PubMed ID: 28665308
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Single quantum dot controls a plasmonic cavity's scattering and anisotropy.
    Hartsfield T; Chang WS; Yang SC; Ma T; Shi J; Sun L; Shvets G; Link S; Li X
    Proc Natl Acad Sci U S A; 2015 Oct; 112(40):12288-92. PubMed ID: 26372957
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.