BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

274 related articles for article (PubMed ID: 29780371)

  • 1. Comparative Metatranscriptomics of Wheat Rhizosphere Microbiomes in Disease Suppressive and Non-suppressive Soils for
    Hayden HL; Savin KW; Wadeson J; Gupta VVSR; Mele PM
    Front Microbiol; 2018; 9():859. PubMed ID: 29780371
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rhizosphere community selection reveals bacteria associated with reduced root disease.
    Yin C; Casa Vargas JM; Schlatter DC; Hagerty CH; Hulbert SH; Paulitz TC
    Microbiome; 2021 Apr; 9(1):86. PubMed ID: 33836842
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Metabolomics approaches for the discrimination of disease suppressive soils for Rhizoctonia solani AG8 in cereal crops using
    Hayden HL; Rochfort SJ; Ezernieks V; Savin KW; Mele PM
    Sci Total Environ; 2019 Feb; 651(Pt 1):1627-1638. PubMed ID: 30360288
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sensitivity of Rhizoctonia Isolates to Phenazine-1-Carboxylic Acid and Biological Control by Phenazine-Producing Pseudomonas spp.
    Jaaffar AKM; Parejko JA; Paulitz TC; Weller DM; Thomashow LS
    Phytopathology; 2017 Jun; 107(6):692-703. PubMed ID: 28383281
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Manipulation of rhizosphere bacterial communities to induce suppressive soils.
    Mazzola M
    J Nematol; 2007 Sep; 39(3):213-20. PubMed ID: 19259490
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Wheat Genotype-Specific Recruitment of Rhizosphere Bacterial Microbiota Under Controlled Environments.
    Dilla-Ermita CJ; Lewis RW; Sullivan TS; Hulbert SH
    Front Plant Sci; 2021; 12():718264. PubMed ID: 34925393
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Wheat Genotype-Specific Induction of Soil Microbial Communities Suppressive to Disease Incited by Rhizoctonia solani Anastomosis Group (AG)-5 and AG-8.
    Mazzola M; Gu YH
    Phytopathology; 2002 Dec; 92(12):1300-7. PubMed ID: 18943884
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Brachypodium distachyon genotypes vary in resistance to Rhizoctonia solani AG8.
    Schneebeli K; Mathesius U; Zwart AB; Bragg JN; Vogel JP; Watt M
    Funct Plant Biol; 2016 Mar; 43(2):189-198. PubMed ID: 32480452
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Agroecological factors correlated to soil DNA concentrations of Rhizoctonia in dryland wheat production zones of Washington state, USA.
    Okubara PA; Schroeder KL; Abatzoglou JT; Paulitz TC
    Phytopathology; 2014 Jul; 104(7):683-91. PubMed ID: 24915426
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reactive Oxygen Species Play a Role in the Infection of the Necrotrophic Fungi, Rhizoctonia solani in Wheat.
    Foley RC; Kidd BN; Hane JK; Anderson JP; Singh KB
    PLoS One; 2016; 11(3):e0152548. PubMed ID: 27031952
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Decoding Wheat Endosphere-Rhizosphere Microbiomes in
    Araujo R; Dunlap C; Barnett S; Franco CMM
    Front Plant Sci; 2019; 10():1038. PubMed ID: 31507625
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synthetic microbial consortia derived from rhizosphere soil protect wheat against a soilborne fungal pathogen.
    Yin C; Hagerty CH; Paulitz TC
    Front Microbiol; 2022; 13():908981. PubMed ID: 36118206
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fungal community structure in disease suppressive soils assessed by 28S LSU gene sequencing.
    Penton CR; Gupta VV; Tiedje JM; Neate SM; Ophel-Keller K; Gillings M; Harvey P; Pham A; Roget DK
    PLoS One; 2014; 9(4):e93893. PubMed ID: 24699870
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dissecting Disease-Suppressive Rhizosphere Microbiomes by Functional Amplicon Sequencing and 10× Metagenomics.
    Tracanna V; Ossowicki A; Petrus MLC; Overduin S; Terlouw BR; Lund G; Robinson SL; Warris S; Schijlen EGWM; van Wezel GP; Raaijmakers JM; Garbeva P; Medema MH
    mSystems; 2021 Jun; 6(3):e0111620. PubMed ID: 34100635
    [TBL] [Abstract][Full Text] [Related]  

  • 15.
    Zhang J; Mavrodi DV; Yang M; Thomashow LS; Mavrodi OV; Kelton J; Weller DM
    Phytopathology; 2020 May; 110(5):1010-1017. PubMed ID: 32065038
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Genome sequencing and comparative genomics of the broad host-range pathogen Rhizoctonia solani AG8.
    Hane JK; Anderson JP; Williams AH; Sperschneider J; Singh KB
    PLoS Genet; 2014 May; 10(5):e1004281. PubMed ID: 24810276
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Detection and Quantification of
    Wallon T; Sauvageau A; Heyden HV
    Plants (Basel); 2020 Dec; 10(1):. PubMed ID: 33383813
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Phylogenetic diversity and antagonistic traits of root and rhizosphere pseudomonads of bean from Iran for controlling Rhizoctonia solani.
    Keshavarz-Tohid V; Taheri P; Muller D; Prigent-Combaret C; Vacheron J; Taghavi SM; Tarighi S; Moënne-Loccoz Y
    Res Microbiol; 2017 Oct; 168(8):760-772. PubMed ID: 28851671
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transcriptomic changes in the plant pathogenic fungus Rhizoctonia solani AG-3 in response to the antagonistic bacteria Serratia proteamaculans and Serratia plymuthica.
    Gkarmiri K; Finlay RD; Alström S; Thomas E; Cubeta MA; Högberg N
    BMC Genomics; 2015 Aug; 16(1):630. PubMed ID: 26296338
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular and genetic aspects of controlling the soilborne necrotrophic pathogens Rhizoctonia and Pythium.
    Okubara PA; Dickman MB; Blechl AE
    Plant Sci; 2014 Nov; 228():61-70. PubMed ID: 25438786
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.